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VHDL “Process” Construct
 Allows conventional programming language structures to 

describe circuit behavior – especially sequential behavior
 Process statements are executed in sequence
 Process statements are executed once at start of simulation
 Process is suspended at “end process” until an event occurs on a 

signal in the “sensitivity list”

[label:]  process (sensitivity list)
declarations

begin
sequential statements

end process;



Modeling combinational logic as a process
-- All signals referenced in process must be in the sensitivity list.
entity And_Good is 

port (a, b: in std_logic; c: out std_logic); 
end And_Good;

architecture Synthesis_Good of And_Good is
begin

process (a,b)     -- gate sensitive to events on signals a and/or b
begin

c <= a and b;  -- c updated (after delay on a or b  “events” 
end process;

end; 
-- Above process is equivalent to simple signal assignment statement:
-- c <= a and b;  



Bad example of combinational logic
-- This example produces unexpected results.
entity And_Bad is 

port (a, b: in std_logic; c: out std_logic); 
end And_Bad;
architecture Synthesis_Bad of And_Bad is

begin
process (a) -- sensitivity list should be (a, b)
begin 

c <= a and b;  -- will not react to changes in b
end process;

end Synthesis_Bad; 
-- synthesis may generate a flip flop, triggered by signal a



Modeling sequential behavior
-- Edge-triggered flip flop/register
entity DFF is 
port (D,CLK: in bit;

Q: out bit);
end DFF;
architecture behave of DFF is
begin

process(clk)   -- “process sensitivity list”
begin

if (clk’event and clk=‘1’) then    -- rising edge of clk
Q <= D; -- optional “after x” for delay
QB <= not D;

end if;
end process;

end;

 clk’event is an “attribute” of signal clk (signals have several attributes)
 clk’event = TRUE if an event has occurred on clk at the current simulation time

FALSE if no event on clk at the current simulation time
 clk‘stable is a complementary attribute (TRUE of no event at this time)

D         Q

CLK    QB



Edge-triggered flip-flop
• Special functions in package std_logic_1164 for std_logic types

• rising_edge(clk) = TRUE for 0->1, L->H and several other 
“rising-edge” conditions

• falling_edge(clk) = TRUE for 1->0, H->L and several other 
“falling-edge” conditions

Example:
signal clk: std_logic;

begin 
process (clk)                       -- trigger process on clk event
begin

if rising_edge(clk) then    -- detect rising edge of clk
Q   <= D ;                -- Q and QB change on rising edge
QB <= not D;

end if;
end process;



Common error in processes
• Process statements are evaluated only at time instant T, at which an 

event occurs on a signal in the sensitivity list
• Statements in the process use signal values that exist at time T.
• Signal assignment statements “schedule” future events.

Example:
process (clk)                     -- trigger process on clk event
begin

if rising_edge(clk) then  -- detect rising edge of clk
Q   <= D ;              -- Q and QB change δ time after rising edge
QB <= not Q;         -- Timing error here!! 

end if;                         -- Desired QB appears one clock period late!
end process;                     -- Should be:   QB <= not D;

As written above, if clk edge occurs at time T:
Q will change at time T+δ, to D(T)

QB will change at time T+δ, to “not Q(T)” – using Q(T) rather than new Q(T+δ)



Alternative to sensitivity list
process   -- no “sensitivity list”
begin

wait on clk; -- suspend process until event on clk
if (clk=‘1’) then

Q <= D after 1 ns;
end if;

end process;

 BUT - sensitivity list is preferred for sequential circuits!

 Other “wait” formats:  wait until (clk’event and clk=‘1’)
wait for 20 ns;

 This format does not allow for asynchronous controls
 Cannot have both sensitivity list and wait statement
 Process executes endlessly if neither sensitivity list nor wait 

statement provided!

D         Q

CLK



Level-Sensitive D latch vs. D flip-flop
entity Dlatch is 

port (D,CLK: in bit;
Q: out bit);

end Dlatch;
architecture behave of Dlatch is
begin

process(D, clk)
begin

if (clk=‘1’) then
Q <= D after 1 ns;

end if;
end process;

end;

Qlatch can change when CLK becomes ‘1’ and/or when D changes 
while CLK=‘1’ (rather than changing only at a clock edge)

D         Q

CLK

CLK

D

Qlatch

Qflip-flop



RTL “register” model (not gate-level)

entity Reg8 is 
port (D: in std_logic_vector(0 to 7);

Q: out std_logic_vector(0 to 7);
LD: in std_logic);

end Reg8;
architecture behave of Reg8 is
begin

process(LD) 
begin

if  rising_edge(LD) then
Q <= D;

end if;
end process;

end;
D and Q can be any abstract data type

Reg8

D(0 to 7)

Q(0 to 7)

LD



RTL “register” with clock enable
--Connect all system registers to a common clock
--Select specific registers to be loaded
entity RegCE is 

port (D: in std_logic_vector(0 to 7);
Q: out std_logic_vector(0 to 7);
EN: in std_logic;      --clock enable
CLK: in std_logic);

end RegCE;
architecture behave of RegCE is
begin

process(CLK) 
begin

if  rising_edge(CLK) then
if EN = ‘1’ then

Q <= D;     --load only if EN=1 at the clock transition
end if;

end if;
end process;

end;

RegCE

D(0 to 7)

Q(0 to 7)

CLK
EN



Synchronous vs asynchronous inputs

process (clock, asynchronous_signals )
begin

if (boolean_expression) then
asynchronous signal_assignments

elsif (boolean_expression) then
asynchronous signal assignments

elsif (clock’event and clock = contstant) then
synchronous signal_assignments

end if ;
end process;

• Synchronous inputs are synchronized to the clock.
• Asynchronous inputs are not, and cause immediate change.

• Asynchronous inputs normally have precedence over sync. inputs 



Synchronous vs. Asynchronous 
Flip-Flop Inputs
entity DFF is 
port (D,CLK: in std_logic;     --D is a sync input

PRE,CLR: in std_logic;  --PRE/CLR are async inputs
Q: out std_logic);

end DFF;
architecture behave of DFF is
begin

process(clk,PRE,CLR)
begin

if (CLR=‘0’) then -- async CLR has precedence
Q <= ‘0’;

elsif (PRE=‘0’) then  -- then async PRE has precedence
Q <= ‘1’;

elsif rising_edge(clk) then   -- sync operation only if CLR=PRE=‘1’
Q <= D; 

end if;
end process;

end;

CLR
D         Q

CLK
PRE

What happens if CLR = PRE = 0 ??



Sequential Constructs: if-then-else
General format: Example:

if (condition) then if (S = “00”) then
do stuff Z <= A;

elsif (condition) then elsif (S = “11”) then
do more stuff Z <= B;

else else
do other stuff Z <= C;

end if; end if;

elsif and else clauses are optional, BUT incompletely 
specified if-then-else (no else) implies memory element



Sequential Constructs: case-when

General format: Example:

case expression is case S is
when value => when “00” =>

do stuff Z <= A;
when value => when “11” =>

do more stuff Z <= B;
when others => when others =>

do other stuff Z <= C;
end case; end case;



Sequential Constructs: for loop

General format: Example:

[label:] for identifier in range loop init: for k in N-1 downto 0 loop
do a bunch of junk Q(k) <= ‘0’;

end loop [label]; end loop init;

Note: variable k is “implied” in the for-loop and does not 
need to be declared



Sequential Constructs: while loop

General format: Example:

[label:] while condition loop init: while (k > 0) loop
do some stuff Q(k) <= ‘0’

end loop [label]; k := k – 1;
end loop init;

Note: Variable k must be declared as a process “variable”,
between sensitivity list and begin, with format:

variable k: integer := N-1;



Modeling Finite State Machines (FSMs)
 “Manual” FSM design & synthesis process:

1. Design state diagram (behavior)
2. Derive state table
3. Reduce state table
4. Choose a state assignment
5. Derive output equations
6. Derive flip-flop excitation equations

 Steps 2-6 can be automated, given a state diagram
 Model states as enumerated type
 Model output function (Mealy or Moore model)
 Model state transitions (functions of current state and inputs)
 Consider how initial state will be forced



FSM structure

Comb.
Logic

FFs

Inputs
x

Outputs
z

Next State
Y

Present State
y

Mealy Outputs z = f(x,y),   Moore Outputs z = f(y)

Next State Y = f(x,y)

Clock



FSM example – Mealy model

B/0 
C/1 
A/1

0/0

1/1 1/0

1/1

0/0

0/0
X/Z Present 

state
Input x

0 1

Next state/output

A/0 
A/0 
C/0

A 
B 
C

A

BC

entity seqckt is
port (  x: in   std_logic; -- FSM input

z: out std_logic; -- FSM output
clk: in std_logic ); -- clock

end seqckt;



FSM example - behavioral model

architecture behave of seqckt is
type states is (A,B,C);  -- symbolic state names (enumerate)
signal state: states;       --state variable 

begin

-- Output function (combinational logic)
z <= ‘1’ when ((state = B) and (x = ‘1’))     --all conditions

or ((state = C) and (x = ‘1’))    --for which z=1.
else ‘0’;                                           --otherwise z=0

-- State transitions on next slide



FSM example – state transitions
process (clk) – trigger state change on clock transition

begin
if rising_edge(clk) then  -- change state on rising clock edge

case state is -- change state according to x
when A => if (x = ‘0’) then

state <= A;
else  -- if (x = ‘1’)

state <= B;
end if;

when B => if (x=‘0’) then
state <= A;

else  -- if (x = ‘1’)
state <= C;

end if;
when C => if (x=‘0’) then

state <= C;
else  -- if (x = ‘1’)

state <= A;
end if;

end case;
end if;

end process;



FSM example – alternative model

architecture behave of seqckt is
type states is (A,B,C);  -- symbolic state names (enumerate)
signal curr_state,next_state: states;

begin
-- Model the memory elements of the FSM
process (clk)
begin

if (clk’event and clk=‘1’) then
pres_state <= next_state;

end if;
end process;

(continue on next slide)



FSM example (alternate model, continued)

-- Model next-state and output functions of the FSM
-- as combinational logic
process (x, pres_state) -- function inputs
begin

case pres_state is -- describe each state
when A => if (x = ‘0’) then

z <= ‘0’;
next_state <= A;

else  -- if (x = ‘1’)
z <= ‘0’;
next_state <= B;

end if;

(continue on next slide for pres_state = B and C)



FSM example (alternate model, continued)

when B => if (x=‘0’) then
z <= ‘0’;
next_state <= A;

else
z <= ‘1’;
next_state <= C;

end if;
when C => if (x=‘0’) then

z <= ‘0’;
next_state <= C;

else
z <= ‘1’;
next_state <= A;

end if;
end case;

end process;



Alternative form for output and next 
state functions (combinational logic)
-- Next state function (combinational logic)
next_state <= A when ((curr_state = A) and (x = ‘0’))

or ((curr_state = B) and (x = ‘0’)) 
or ((curr_state = C) and (x = ‘1’)) else

B when ((curr_state = 1) and (x = ‘1’)) else
C;

-- Output function (combinational logic)
z <= ‘1’ when ((curr_state = B) and (x = ‘1’))     --all conditions

or ((curr_state = C) and (x = ‘1’))    --for which z=1.
else ‘0’;             --otherwise z=0



Moore model FSM 

entity FSM is 
port (CLK, EN, TDI: in bit; 

RST, SHIFT: out bit); 
end entity FSM; 



architecture RTL of FSM is 
type STATES is (Reset, BIST, Result, NOP); -- abstract state names
signal CS: STATES; -- current state 

begin 
SYNC: process (CLK) begin    -- change states on falling edge of CLK

if (CLK’event and CLK=’0’) then
if (EN = ‘1’) then -- change only if EN = 1

if (CS = Reset) then 
if (TDI=’0’) then CS <= BIST; end if; --EN,TDI = 10

elsif (CS = BIST) then 
if (TDI=’1’) then CS <= Result;  end if; --EN,TDI = 11

elsif (CS = Result) then 
if (TDI=’1’) then CS <= NOP; end if; --EN,TDI = 11

elsif (CS = NOP) then 
if (TDI=’0’) then CS <= BIST;                --EN,TDI = 10

else CS <= Reset; --EN,TDI = 11
end if; 

end if; 
end if; end if; end process SYNC; 

(Outputs on next slide)



-- Outputs = functions of the state
COMB: process (CS) begin 

if (CS = Reset) then 
RST <= ‘1’; 
SHIFT <= ‘0’; 

elsif (CS = Result) then 
RST <= ‘0’; 
SHIFT <= ‘1’; 

else
RST <= ‘0’; 
SHIFT <= ‘0’; 

end if; 
end process COMB; 

end architecture RTL; 

-- more compact form
RST <= ‘1’ when CS = Reset else ‘0’;

SHIFT<= ‘1’ when CS = Result else ‘0’;

end architecture RTL; 

Moore model outputs

Note that Moore model outputs
are independent of current inputs.
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