
VHDL 3 – Sequential Logic
Circuits

Reference: Roth/John Text: Chapter 2

VHDL “Process” Construct
 Allows conventional programming language structures to

describe circuit behavior – especially sequential behavior
 Process statements are executed in sequence
 Process statements are executed once at start of simulation
 Process is suspended at “end process” until an event occurs on a

signal in the “sensitivity list”

[label:] process (sensitivity list)
declarations

begin
sequential statements

end process;

Modeling combinational logic as a process
-- All signals referenced in process must be in the sensitivity list.
entity And_Good is

port (a, b: in std_logic; c: out std_logic);
end And_Good;

architecture Synthesis_Good of And_Good is
begin

process (a,b) -- gate sensitive to events on signals a and/or b
begin

c <= a and b; -- c updated (after delay on a or b “events”
end process;

end;
-- Above process is equivalent to simple signal assignment statement:
-- c <= a and b;

Bad example of combinational logic
-- This example produces unexpected results.
entity And_Bad is

port (a, b: in std_logic; c: out std_logic);
end And_Bad;
architecture Synthesis_Bad of And_Bad is

begin
process (a) -- sensitivity list should be (a, b)
begin

c <= a and b; -- will not react to changes in b
end process;

end Synthesis_Bad;
-- synthesis may generate a flip flop, triggered by signal a

Modeling sequential behavior
-- Edge-triggered flip flop/register
entity DFF is
port (D,CLK: in bit;

Q: out bit);
end DFF;
architecture behave of DFF is
begin

process(clk) -- “process sensitivity list”
begin

if (clk’event and clk=‘1’) then -- rising edge of clk
Q <= D; -- optional “after x” for delay
QB <= not D;

end if;
end process;

end;

 clk’event is an “attribute” of signal clk (signals have several attributes)
 clk’event = TRUE if an event has occurred on clk at the current simulation time

FALSE if no event on clk at the current simulation time
 clk‘stable is a complementary attribute (TRUE of no event at this time)

D Q

CLK QB

Edge-triggered flip-flop
• Special functions in package std_logic_1164 for std_logic types

• rising_edge(clk) = TRUE for 0->1, L->H and several other
“rising-edge” conditions

• falling_edge(clk) = TRUE for 1->0, H->L and several other
“falling-edge” conditions

Example:
signal clk: std_logic;

begin
process (clk) -- trigger process on clk event
begin

if rising_edge(clk) then -- detect rising edge of clk
Q <= D ; -- Q and QB change on rising edge
QB <= not D;

end if;
end process;

Common error in processes
• Process statements are evaluated only at time instant T, at which an

event occurs on a signal in the sensitivity list
• Statements in the process use signal values that exist at time T.
• Signal assignment statements “schedule” future events.

Example:
process (clk) -- trigger process on clk event
begin

if rising_edge(clk) then -- detect rising edge of clk
Q <= D ; -- Q and QB change δ time after rising edge
QB <= not Q; -- Timing error here!!

end if; -- Desired QB appears one clock period late!
end process; -- Should be: QB <= not D;

As written above, if clk edge occurs at time T:
Q will change at time T+δ, to D(T)

QB will change at time T+δ, to “not Q(T)” – using Q(T) rather than new Q(T+δ)

Alternative to sensitivity list
process -- no “sensitivity list”
begin

wait on clk; -- suspend process until event on clk
if (clk=‘1’) then

Q <= D after 1 ns;
end if;

end process;

 BUT - sensitivity list is preferred for sequential circuits!

 Other “wait” formats: wait until (clk’event and clk=‘1’)
wait for 20 ns;

 This format does not allow for asynchronous controls
 Cannot have both sensitivity list and wait statement
 Process executes endlessly if neither sensitivity list nor wait

statement provided!

D Q

CLK

Level-Sensitive D latch vs. D flip-flop
entity Dlatch is

port (D,CLK: in bit;
Q: out bit);

end Dlatch;
architecture behave of Dlatch is
begin

process(D, clk)
begin

if (clk=‘1’) then
Q <= D after 1 ns;

end if;
end process;

end;

Qlatch can change when CLK becomes ‘1’ and/or when D changes
while CLK=‘1’ (rather than changing only at a clock edge)

D Q

CLK

CLK

D

Qlatch

Qflip-flop

RTL “register” model (not gate-level)

entity Reg8 is
port (D: in std_logic_vector(0 to 7);

Q: out std_logic_vector(0 to 7);
LD: in std_logic);

end Reg8;
architecture behave of Reg8 is
begin

process(LD)
begin

if rising_edge(LD) then
Q <= D;

end if;
end process;

end;
D and Q can be any abstract data type

Reg8

D(0 to 7)

Q(0 to 7)

LD

RTL “register” with clock enable
--Connect all system registers to a common clock
--Select specific registers to be loaded
entity RegCE is

port (D: in std_logic_vector(0 to 7);
Q: out std_logic_vector(0 to 7);
EN: in std_logic; --clock enable
CLK: in std_logic);

end RegCE;
architecture behave of RegCE is
begin

process(CLK)
begin

if rising_edge(CLK) then
if EN = ‘1’ then

Q <= D; --load only if EN=1 at the clock transition
end if;

end if;
end process;

end;

RegCE

D(0 to 7)

Q(0 to 7)

CLK
EN

Synchronous vs asynchronous inputs

process (clock, asynchronous_signals)
begin

if (boolean_expression) then
asynchronous signal_assignments

elsif (boolean_expression) then
asynchronous signal assignments

elsif (clock’event and clock = contstant) then
synchronous signal_assignments

end if ;
end process;

• Synchronous inputs are synchronized to the clock.
• Asynchronous inputs are not, and cause immediate change.

• Asynchronous inputs normally have precedence over sync. inputs

Synchronous vs. Asynchronous
Flip-Flop Inputs
entity DFF is
port (D,CLK: in std_logic; --D is a sync input

PRE,CLR: in std_logic; --PRE/CLR are async inputs
Q: out std_logic);

end DFF;
architecture behave of DFF is
begin

process(clk,PRE,CLR)
begin

if (CLR=‘0’) then -- async CLR has precedence
Q <= ‘0’;

elsif (PRE=‘0’) then -- then async PRE has precedence
Q <= ‘1’;

elsif rising_edge(clk) then -- sync operation only if CLR=PRE=‘1’
Q <= D;

end if;
end process;

end;

CLR
D Q

CLK
PRE

What happens if CLR = PRE = 0 ??

Sequential Constructs: if-then-else
General format: Example:

if (condition) then if (S = “00”) then
do stuff Z <= A;

elsif (condition) then elsif (S = “11”) then
do more stuff Z <= B;

else else
do other stuff Z <= C;

end if; end if;

elsif and else clauses are optional, BUT incompletely
specified if-then-else (no else) implies memory element

Sequential Constructs: case-when

General format: Example:

case expression is case S is
when value => when “00” =>

do stuff Z <= A;
when value => when “11” =>

do more stuff Z <= B;
when others => when others =>

do other stuff Z <= C;
end case; end case;

Sequential Constructs: for loop

General format: Example:

[label:] for identifier in range loop init: for k in N-1 downto 0 loop
do a bunch of junk Q(k) <= ‘0’;

end loop [label]; end loop init;

Note: variable k is “implied” in the for-loop and does not
need to be declared

Sequential Constructs: while loop

General format: Example:

[label:] while condition loop init: while (k > 0) loop
do some stuff Q(k) <= ‘0’

end loop [label]; k := k – 1;
end loop init;

Note: Variable k must be declared as a process “variable”,
between sensitivity list and begin, with format:

variable k: integer := N-1;

Modeling Finite State Machines (FSMs)
 “Manual” FSM design & synthesis process:

1. Design state diagram (behavior)
2. Derive state table
3. Reduce state table
4. Choose a state assignment
5. Derive output equations
6. Derive flip-flop excitation equations

 Steps 2-6 can be automated, given a state diagram
 Model states as enumerated type
 Model output function (Mealy or Moore model)
 Model state transitions (functions of current state and inputs)
 Consider how initial state will be forced

FSM structure

Comb.
Logic

FFs

Inputs
x

Outputs
z

Next State
Y

Present State
y

Mealy Outputs z = f(x,y), Moore Outputs z = f(y)

Next State Y = f(x,y)

Clock

FSM example – Mealy model

B/0
C/1
A/1

0/0

1/1 1/0

1/1

0/0

0/0
X/Z Present

state
Input x

0 1

Next state/output

A/0
A/0
C/0

A
B
C

A

BC

entity seqckt is
port (x: in std_logic; -- FSM input

z: out std_logic; -- FSM output
clk: in std_logic); -- clock

end seqckt;

FSM example - behavioral model

architecture behave of seqckt is
type states is (A,B,C); -- symbolic state names (enumerate)
signal state: states; --state variable

begin

-- Output function (combinational logic)
z <= ‘1’ when ((state = B) and (x = ‘1’)) --all conditions

or ((state = C) and (x = ‘1’)) --for which z=1.
else ‘0’; --otherwise z=0

-- State transitions on next slide

FSM example – state transitions
process (clk) – trigger state change on clock transition

begin
if rising_edge(clk) then -- change state on rising clock edge

case state is -- change state according to x
when A => if (x = ‘0’) then

state <= A;
else -- if (x = ‘1’)

state <= B;
end if;

when B => if (x=‘0’) then
state <= A;

else -- if (x = ‘1’)
state <= C;

end if;
when C => if (x=‘0’) then

state <= C;
else -- if (x = ‘1’)

state <= A;
end if;

end case;
end if;

end process;

FSM example – alternative model

architecture behave of seqckt is
type states is (A,B,C); -- symbolic state names (enumerate)
signal curr_state,next_state: states;

begin
-- Model the memory elements of the FSM
process (clk)
begin

if (clk’event and clk=‘1’) then
pres_state <= next_state;

end if;
end process;

(continue on next slide)

FSM example (alternate model, continued)

-- Model next-state and output functions of the FSM
-- as combinational logic
process (x, pres_state) -- function inputs
begin

case pres_state is -- describe each state
when A => if (x = ‘0’) then

z <= ‘0’;
next_state <= A;

else -- if (x = ‘1’)
z <= ‘0’;
next_state <= B;

end if;

(continue on next slide for pres_state = B and C)

FSM example (alternate model, continued)

when B => if (x=‘0’) then
z <= ‘0’;
next_state <= A;

else
z <= ‘1’;
next_state <= C;

end if;
when C => if (x=‘0’) then

z <= ‘0’;
next_state <= C;

else
z <= ‘1’;
next_state <= A;

end if;
end case;

end process;

Alternative form for output and next
state functions (combinational logic)
-- Next state function (combinational logic)
next_state <= A when ((curr_state = A) and (x = ‘0’))

or ((curr_state = B) and (x = ‘0’))
or ((curr_state = C) and (x = ‘1’)) else

B when ((curr_state = 1) and (x = ‘1’)) else
C;

-- Output function (combinational logic)
z <= ‘1’ when ((curr_state = B) and (x = ‘1’)) --all conditions

or ((curr_state = C) and (x = ‘1’)) --for which z=1.
else ‘0’; --otherwise z=0

Moore model FSM

entity FSM is
port (CLK, EN, TDI: in bit;

RST, SHIFT: out bit);
end entity FSM;

architecture RTL of FSM is
type STATES is (Reset, BIST, Result, NOP); -- abstract state names
signal CS: STATES; -- current state

begin
SYNC: process (CLK) begin -- change states on falling edge of CLK

if (CLK’event and CLK=’0’) then
if (EN = ‘1’) then -- change only if EN = 1

if (CS = Reset) then
if (TDI=’0’) then CS <= BIST; end if; --EN,TDI = 10

elsif (CS = BIST) then
if (TDI=’1’) then CS <= Result; end if; --EN,TDI = 11

elsif (CS = Result) then
if (TDI=’1’) then CS <= NOP; end if; --EN,TDI = 11

elsif (CS = NOP) then
if (TDI=’0’) then CS <= BIST; --EN,TDI = 10

else CS <= Reset; --EN,TDI = 11
end if;

end if;
end if; end if; end process SYNC;

(Outputs on next slide)

-- Outputs = functions of the state
COMB: process (CS) begin

if (CS = Reset) then
RST <= ‘1’;
SHIFT <= ‘0’;

elsif (CS = Result) then
RST <= ‘0’;
SHIFT <= ‘1’;

else
RST <= ‘0’;
SHIFT <= ‘0’;

end if;
end process COMB;

end architecture RTL;

-- more compact form
RST <= ‘1’ when CS = Reset else ‘0’;

SHIFT<= ‘1’ when CS = Result else ‘0’;

end architecture RTL;

Moore model outputs

Note that Moore model outputs
are independent of current inputs.

	VHDL 3 – Sequential Logic Circuits
	VHDL “Process” Construct
	Modeling combinational logic as a process
	Bad example of combinational logic
	Modeling sequential behavior
	Edge-triggered flip-flop
	Common error in processes
	Alternative to sensitivity list
	Level-Sensitive D latch vs. D flip-flop
	RTL “register” model (not gate-level)
	RTL “register” with clock enable
	Synchronous vs asynchronous inputs
	Synchronous vs. Asynchronous �Flip-Flop Inputs
	Sequential Constructs: if-then-else
	Sequential Constructs: case-when
	Sequential Constructs: for loop
	Sequential Constructs: while loop
	Modeling Finite State Machines (FSMs)
	FSM structure
	FSM example – Mealy model
	FSM example - behavioral model
	FSM example – state transitions
	FSM example – alternative model
	FSM example (alternate model, continued)
	FSM example (alternate model, continued)
	Alternative form for output and next state functions (combinational logic)
	Moore model FSM
	Slide Number 28
	Moore model outputs

