VHDL 2 — Combinational
Logic Circuits

Reference: Roth/John Text: Chapter 2

Combinational logic

-- Behavior can be specified as concurrent signal assighments
-- These model concurrent operation of hardware elements
entity Gates is
port (a,b,c:in STD_LOGIC;
d: out STD_LOGIC);
end Gates;
architecture behavior of Gates is
sighal e: STD_LOGIC;
begin
-- concurrent signal assighment statements
e <= (a and b) xor (not c); -- synthesize gate-level ckt
d <=anorband (hote); --in targettechnology
end;

Example: SR latch (logic equations)

entity SRlatch is
port (S,R: instd logic; --latch inputs
Q,QB: out std_logic); --latch outputs

end SRlatch; —
Qi _'D

architecture eqns of SRlatch is . ?57
— i)

signal Qi,QBi: std_logic; -- internal signals ~

begp .
QBi <= S nor Qi; --Incorrect would be: QB <= S norgf Q; :
Qi <= R nor QBi; --Incorrect would be:Q <=R noriQB; :
Q <= Qj; --drive output Q with internal Qi Ca‘hﬁb't' =

QB <= QBi; --drive output QB with internal QBi “reference”
end: output ports.

Conditional signal assignment (form 1)

2-t0-1 Mux
z <= m whensel =0’ else n; m—0]
True/False conditions n 1T
l sel 4-t0-1 Mux
<= =“ bR
y <= a when (5=00") else a—»OO\
b when (S=01") else o
b —
c when (5="10") else — Y
c —10
d;
d _’%
Condition can be any Boolean expression S

y <=awhen (F="1") and (G=0") ...

Conditional signal assignment (form 2)
-- One signal (S in this case) selects the result
signal a,b,c,d,y: std_logic;
signal S: std_logic_vector(0 to |);

begin 4-t0-1 Mux
with S select
¢¢ b3 a _»()()\
y <= awhen“007",
b when “01”, b —01
¢¢ b3 > y
c when 107, c —110
d when “I1 |”;
--Alternative ‘“default” *: d _’%

d when others; S

* “std_logic” values can be other than ‘0’ and ‘1’

32-bit-wide 4-to-1 multiplexer

signal a,b,c,d,y: std_logic_vector(0 to 31);

signal S: std_logic_vector(0 to 1); 4-to-1 Mux
begin a _.oo\
with S select b —{01
y <= a when “00%, . o Y
b when“017, 1
c when “10”, /(
d when “1 1”’; S

--y, a,b,c,d can be any type, as long as they match

32-bit-wide 4-to-1 multiplexer

-- Delays can be specified if desired

signal a,b,c,d,y: std_logic_vector(0 to 31); 4.1 mux

signal S:std logic_vector(0 to 1);
g _logic_ R
begin
. Optional non-delta b —01
with S select ___Uelays for each option — Y
l/ \| C _’10
y <= alafter | nsswhen*“007,

| | —f11
bafter 2 nsiwhen “01”, d /T/
c after | ns:when“10”, S

d: rwhen “1 17

—————————

a->y delay is 1ns, b->y delay is 2ns, c->y delay is 1ns, d->y delay is

Truth table model as a conditional assignment

» Conditional assighment can model the truth table of a
switching function (without deriving logic equations)

signal S: std_logic_vector(l downto 0);

. begin
l S<=A&B; --S(1)=A,S(0)=B
A B Y with S select -- 4 options for S
—— Y <=‘0’ when “00”,
> ‘I’ when*017,
> ‘|’ when “10”,
> ‘0’ when“1 17,

‘X’ when others;

& is the concatenate operator, merging scalars/vectors into larger vectors

Example: full adder truth table

ADDin <=A & B & Cin; --ADDin is a 3-bit vector
S <=ADDout(0); --Sum output (ADDout is a 2-bit vector)
Cout <=ADDout(l); --Carry output
ADDout ADDin
with ADDin select A | B |Cin Cout| S |
ADDout <=*“00" when “000”, 0O 0 0 0
“01” when “001”, 0
“01” when“010”, 0
“10” when“01 17, 0
“01” when “100”, |
“10” when“101”, |
“10” when“1107, |
“I'1” when“I117, |
“XX” when others;

0
I
I
0
I
0
0
I

0
0
I
0
I
I
I

0 I
I 0
I I
0 0
0 I
I 0
I I

Example: 2-to-4 decoder

library ieee; use ieee.std_logic | 164.all;
entity decode?2 4 is
port (A,B,EN:in std_logic;
Y: out std_logic_vector(3 downto 0));
end decode? 4;
architecture behavior of decode2 4 is
signal D: std_logic_vector(2 downto 0);
begin
D <=EN & B &A; -- vector of the three inputs
with D select
Y <=%“0001” when “100”, --enabled, BA=00
“0010” when“101”, --enabled, BA=01
“0100” when“110”, --enabled, BA=10
“1000” when “l | 1, --enabled, BA=1|
“0000” when others; --disabled (EN = 0)
end;

EN

Y(0)
Y(1)
Y(2)

Y(3)

Structural model (no “behavior” specified)

architecture structure of full_addl is
component xor -- declare component to be used
port (x,y: in std_logic;
7: out std |oglc I|brary entity architecture

end component; //

for all: xor use entity work.xor(eqns); -- if multiple arch’s in lib.
signal x1:std_logic; -- signal internal to this component

begin -- instantiate components with “map” of connections
Gl: xor port map (a, b, x1); -- instantiate |t xor gate
G2: xor port map (xI, cin, sum); -- instantiate 2" xor gate

...add circuit for carry output... a x
end; a ST
an

Associating signals with formal ports

component AndGate
port (Ain_I,Ain_2 :in std_logic; -- formal parameters
Aout : out std_logic);
end component; AndGate

begin " Ai”—1:
° . . . AOUt
-- positional association of “actual” to “formal” Ain 2 —Z1

Al:AndGate port map (X,Y, ZI); Y
-- named association (usually improves readability)
A2:AndGate port map (Ain_2=>Y, Aout=>72, Ain_|=>X);
-- both (positional must begin from leftmost formal)
A3:AndGate port map (X, Aout => Z3, Ain_2 =>Y);

Example: D flip-flop (equations model)

l

Preset

entity DFF is
port (Preset: in std_logic;
Clear:in std_logic;
Clock:in std_logic;
Data: in std_logic;

| Data Q —

,| Clock Qbar —
Q: out std_logic; Clear

Qbar: out std_logic); T
end DFF;

7474 D {lip-flop equations

architecture eqns of DFF is

begin

end;

signal A,B,C,D: std_logic;
signal QInt, QBarlint: std_logic;

A <= not (Preset and D and B) after | ns;

B <= not (A and Clear and Clock) after | ns;

C <= not (B and Clock and D) after | ns;

D <= not (C and Clear and Data) after | ns;

Qint <= not (Preset and B and Qbarlint) after | ns;
QBarint <= not (QInt and Clear and C) after | ns;

Q <= QInt; -- Can drive but not read “outs
QBar <= QBarlint; -- Can read & drive “internals”

9

4-bit Register (Structural Model)

entity Register4 is
port (D:in std _logic_vector(0 to 3);
Q: out std_logic_vector(0 to 3);
Clk: in std_logic;
Clr:in std_logic;
Pre: in std_logic);

end Register4; D(3) D(2) D(1) D(0)

CLK
PRE

CLR

Q(3) Q(2) Q(1)

Q(0)

Register Structure

architecture structure of Register4 is
component DFF - declare library component to be used
port (Preset: in std_logic;
Clear:in std_logic;
Clock:in std_logic;
Data:in std_logic;
Q: out std_logic;
Qbar: out std_logic);
end component;
signal Qbar:std_logic_vector(0 to 3); -- dummy for unused FF Qbar outputs
begin
-- Signals connect to ports in order listed above
F3: DFF port map (Pre, Clr, Clk, D(3), Q(3), Qbar(3));
F2: DFF port map (Pre, Clr, Clk, D(2), Q(2), Qbar(2));
Fl: DFF port map (Pre, Clr, Clk, D(I), Q(1), Qbar(l));
FO: DFF port map (Pre, Clr, Clk, D(0), Q(0), Qbar(0));
end;

Register Structure (with open output)

architecture structure of Register4 is
component DFF -- declare library component to be used
port (Preset: in std_logic;
Clear:in std_logic;
Clock: in std_logic;
Data: in std_logic;
Q: out std_logic;
Qbar: out std_logic);
end component;
begin
-- Signals connect to ports in order listed above
F3: DFF port map (Pre, Clr, Clk, D(3), Q(3), OPEN);
F2: DFF port map (Pre, Clr, Clk, D(2), Q(2), OPEN);
Fl: DFF port map (Pre, Clr, Clk, D(1), Q(1), OPEN);
FO: DFF port map (Pre, Clr, Clk, D(0), Q(0), OPEN);

end; T Keyword OPEN indicates
an unconnected output

VHDL “Process” Construct

(Processes will be covered in more detail in “sequential circuit modeling”)

[label:] process (sensitivity list)
declarations
begin
sequential statements
end process;

» Process statements are executed in sequence

» Process statements are executed once at start of simulation

» Process halts at “end” until an event occurs on a signal in the
“sensitivity list”

» Allows conventional programming language methods to
describe circuit behavior

Modeling combinational logic as a process

-- All signals referenced in process must be in the sensitivity list.
entity And_Good is
port (a, b:in std_logic; c: out std_logic);
end And_Good;
architecture Synthesis_Good of And_Good is
begin
process (a,b) -- gate sensitive to events on signals a and/or b
begin
c <= aand b; -- c updated (after delay on a or b “events”
end process;
-- This process is equivalent to the simple signal assighment:
-- c <=aand b;
end;

Bad example of combinational logic

-- This example produces unexpected results.
entity And_Bad is
port (a, b:in std_logic; c: out std_logic);

end And_Bad;
architecture Synthesis_Bad of And_Bad is
begin
process (a) -- sensitivity list should be (a, b)
begin

c <= aand b; -- will not react to changes in b
end process;
end Synthesis_Bad;
-- synthesis may generate a flip flop, triggered by signal a

	VHDL 2 – Combinational Logic Circuits
	Combinational logic
	Example: SR latch (logic equations)
	Conditional signal assignment (form 1)
	Conditional signal assignment (form 2)
	32-bit-wide 4-to-1 multiplexer
	32-bit-wide 4-to-1 multiplexer
	Truth table model as a conditional assignment
	Example: full adder truth table
	Example: 2-to-4 decoder
	Structural model (no “behavior” specified)
	Associating signals with formal ports
	Example: D flip-flop (equations model)
	7474 D flip-flop equations
	4-bit Register (Structural Model)
	Register Structure
	Register Structure (with open output)
	VHDL “Process” Construct
	Modeling combinational logic as a process
	Bad example of combinational logic

