
VHDL 2 – Combinational
Logic Circuits

Reference: Roth/John Text: Chapter 2

Combinational logic
-- Behavior can be specified as concurrent signal assignments
-- These model concurrent operation of hardware elements
entity Gates is

port (a, b,c: in STD_LOGIC;
d: out STD_LOGIC);

end Gates;
architecture behavior of Gates is

signal e: STD_LOGIC;
begin

-- concurrent signal assignment statements
e <= (a and b) xor (not c); -- synthesize gate-level ckt
d <= a nor b and (not e); -- in target technology

end;

Example: SR latch (logic equations)
entity SRlatch is

port (S,R: in std_logic; --latch inputs
Q,QB: out std_logic); --latch outputs

end SRlatch;

architecture eqns of SRlatch is
signal Qi,QBi: std_logic; -- internal signals

begin
QBi <= S nor Qi; -- Incorrect would be: QB <= S nor Q;
Qi <= R nor QBi; -- Incorrect would be: Q <= R nor QB;
Q <= Qi; --drive output Q with internal Qi
QB <= QBi; --drive output QB with internal QBi

end;

Qi

QBi

Cannot
“reference”

output ports.

Conditional signal assignment (form 1)

z <= m when sel = ‘0’ else n;

y <= a when (S=“00”) else
b when (S=“01”) else
c when (S=“10”) else
d;

Condition can be any Boolean expression
y <= a when (F=‘1’) and (G=‘0’) …

00

01

10

11

a

b

c

d

S

y

4-to-1 Mux

2-to-1 Mux
m

n
z

sel

0

1True/False conditions

Conditional signal assignment (form 2)
-- One signal (S in this case) selects the result

signal a,b,c,d,y: std_logic;
signal S: std_logic_vector(0 to 1);

begin
with S select

y <= a when “00”,
b when “01”,
c when “10”,
d when “11”;

--Alternative “default” *:
d when others;

00

01

10

11

a

b

c

d

S

y

4-to-1 Mux

* “std_logic” values can be other than ‘0’ and ‘1’

32-bit-wide 4-to-1 multiplexer

signal a,b,c,d,y: std_logic_vector(0 to 31);
signal S: std_logic_vector(0 to 1);

begin
with S select

y <= a when “00”,
b when “01”,
c when “10”,
d when “11”;

--y, a,b,c,d can be any type, as long as they match

00

01

10

11

a

b

c

d

S

y

4-to-1 Mux

32-bit-wide 4-to-1 multiplexer
-- Delays can be specified if desired
signal a,b,c,d,y: std_logic_vector(0 to 31);

signal S: std_logic_vector(0 to 1);
begin

with S select
y <= a after 1 ns when “00”,

b after 2 ns when “01”,
c after 1 ns when “10”,
d when “11”;

00

01

10

11

a

b

c

d

S

y

4-to-1 Mux

Optional non-delta
delays for each option

a->y delay is 1ns, b->y delay is 2ns, c->y delay is 1ns, d->y delay is δ

Truth table model as a conditional assignment

 Conditional assignment can model the truth table of a
switching function (without deriving logic equations)

signal S: std_logic_vector(1 downto 0);
begin

S <= A & B; -- S(1)=A, S(0)=B
with S select -- 4 options for S

Y <= ‘0’ when “00”,
‘1’ when “01”,
‘1’ when “10”,
‘0’ when “11”,
‘X’ when others;

& is the concatenate operator, merging scalars/vectors into larger vectors

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

S

Example: full adder truth table
ADDin <= A & B & Cin; --ADDin is a 3-bit vector
S <= ADDout(0); --Sum output (ADDout is a 2-bit vector)
Cout <= ADDout(1); --Carry output

with ADDin select
ADDout <= “00” when “000”,

“01” when “001”,
“01” when “010”,
“10” when “011”,
“01” when “100”,
“10” when “101”,
“10” when “110”,
“11” when “111”,
“XX” when others;

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

ADDout ADDin

Example: 2-to-4 decoder
library ieee; use ieee.std_logic_1164.all;
entity decode2_4 is

port (A,B,EN: in std_logic;
Y: out std_logic_vector(3 downto 0));

end decode2_4;
architecture behavior of decode2_4 is

signal D: std_logic_vector(2 downto 0);
begin

D <= EN & B & A; -- vector of the three inputs
with D select

Y <= “0001” when “100”, --enabled, BA=00
“0010” when “101”, --enabled, BA=01
“0100” when “110”, --enabled, BA=10
“1000” when “111”, --enabled, BA=11
“0000” when others; --disabled (EN = 0)

end;

A

B

EN

Y(0)

Y(1)

Y(2)

Y(3)

Structural model (no “behavior” specified)

architecture structure of full_add1 is
component xor -- declare component to be used

port (x,y: in std_logic;
z: out std_logic);

end component;
for all: xor use entity work.xor(eqns); -- if multiple arch’s in lib.
signal x1: std_logic; -- signal internal to this component

begin -- instantiate components with “map” of connections
G1: xor port map (a, b, x1); -- instantiate 1st xor gate
G2: xor port map (x1, cin, sum); -- instantiate 2nd xor gate
…add circuit for carry output…

end;

library entity architecture

Associating signals with formal ports

component AndGate
port (Ain_1, Ain_2 : in std_logic; -- formal parameters

Aout : out std_logic);
end component;

begin
-- positional association of “actual” to “formal”
A1:AndGate port map (X, Y, Z1);
-- named association (usually improves readability)
A2:AndGate port map (Ain_2=>Y, Aout=>Z2, Ain_1=>X);
-- both (positional must begin from leftmost formal)
A3:AndGate port map (X, Aout => Z3, Ain_2 => Y);

Ain_1

Ain_2
AoutX

Y
Z1

AndGate

Example: D flip-flop (equations model)
entity DFF is

port (Preset: in std_logic;
Clear: in std_logic;
Clock: in std_logic;
Data: in std_logic;
Q: out std_logic;
Qbar: out std_logic);

end DFF;

Data

Clock

Q

Qbar

Preset

Clear

7474 D flip-flop equations
architecture eqns of DFF is

signal A,B,C,D: std_logic;
signal QInt, QBarInt: std_logic;

begin
A <= not (Preset and D and B) after 1 ns;
B <= not (A and Clear and Clock) after 1 ns;
C <= not (B and Clock and D) after 1 ns;
D <= not (C and Clear and Data) after 1 ns;
Qint <= not (Preset and B and QbarInt) after 1 ns;
QBarInt <= not (QInt and Clear and C) after 1 ns;
Q <= QInt; -- Can drive but not read “outs”
QBar <= QBarInt; -- Can read & drive “internals”

end;

4-bit Register (Structural Model)
entity Register4 is
port (D: in std_logic_vector(0 to 3);

Q: out std_logic_vector(0 to 3);
Clk: in std_logic;
Clr: in std_logic;
Pre: in std_logic);

end Register4; D(3)

Q(3)

D(2) D(1) D(0)

Q(2) Q(1) Q(0)

CLK
PRE
CLR

Register Structure
architecture structure of Register4 is

component DFF -- declare library component to be used
port (Preset: in std_logic;

Clear: in std_logic;
Clock: in std_logic;
Data: in std_logic;
Q: out std_logic;
Qbar: out std_logic);

end component;
signal Qbar: std_logic_vector(0 to 3); -- dummy for unused FF Qbar outputs

begin
-- Signals connect to ports in order listed above
F3: DFF port map (Pre, Clr, Clk, D(3), Q(3), Qbar(3));
F2: DFF port map (Pre, Clr, Clk, D(2), Q(2), Qbar(2));
F1: DFF port map (Pre, Clr, Clk, D(1), Q(1), Qbar(1));
F0: DFF port map (Pre, Clr, Clk, D(0), Q(0), Qbar(0));

end;

Register Structure (with open output)

architecture structure of Register4 is
component DFF -- declare library component to be used

port (Preset: in std_logic;
Clear: in std_logic;
Clock: in std_logic;
Data: in std_logic;
Q: out std_logic;
Qbar: out std_logic);

end component;
begin

-- Signals connect to ports in order listed above
F3: DFF port map (Pre, Clr, Clk, D(3), Q(3), OPEN);
F2: DFF port map (Pre, Clr, Clk, D(2), Q(2), OPEN);
F1: DFF port map (Pre, Clr, Clk, D(1), Q(1), OPEN);
F0: DFF port map (Pre, Clr, Clk, D(0), Q(0), OPEN);

end; Keyword OPEN indicates
an unconnected output

VHDL “Process” Construct

[label:] process (sensitivity list)
declarations

begin
sequential statements

end process;

 Process statements are executed in sequence
 Process statements are executed once at start of simulation
 Process halts at “end” until an event occurs on a signal in the

“sensitivity list”
 Allows conventional programming language methods to

describe circuit behavior

(Processes will be covered in more detail in “sequential circuit modeling”)

Modeling combinational logic as a process
-- All signals referenced in process must be in the sensitivity list.
entity And_Good is

port (a, b: in std_logic; c: out std_logic);
end And_Good;

architecture Synthesis_Good of And_Good is
begin

process (a,b) -- gate sensitive to events on signals a and/or b
begin

c <= a and b; -- c updated (after delay on a or b “events”
end process;

-- This process is equivalent to the simple signal assignment:
-- c <= a and b;

end;

Bad example of combinational logic
-- This example produces unexpected results.
entity And_Bad is

port (a, b: in std_logic; c: out std_logic);
end And_Bad;
architecture Synthesis_Bad of And_Bad is

begin
process (a) -- sensitivity list should be (a, b)
begin

c <= a and b; -- will not react to changes in b
end process;

end Synthesis_Bad;
-- synthesis may generate a flip flop, triggered by signal a

	VHDL 2 – Combinational Logic Circuits
	Combinational logic
	Example: SR latch (logic equations)
	Conditional signal assignment (form 1)
	Conditional signal assignment (form 2)
	32-bit-wide 4-to-1 multiplexer
	32-bit-wide 4-to-1 multiplexer
	Truth table model as a conditional assignment
	Example: full adder truth table
	Example: 2-to-4 decoder
	Structural model (no “behavior” specified)
	Associating signals with formal ports
	Example: D flip-flop (equations model)
	7474 D flip-flop equations
	4-bit Register (Structural Model)
	Register Structure
	Register Structure (with open output)
	VHDL “Process” Construct
	Modeling combinational logic as a process
	Bad example of combinational logic

