Modeling Digital Systems
with VHDL

Reference: Roth & John text — Chapter 2
Michael Smith text — Chapters 8 & 10

Hardware Description Languages

» VHDL =VHSIC Hardware Description Language

(VHSIC =Very High Speed Integrated Circuits)
Developed by DOD from 1983 — based on ADA language
|IEEE Standard 1076-1987/1993/2002/2008
Gate level through system level design and verification

» Verilog — created in 1984 by Philip Moorby of
Gateway Design Automation (merged with Cadence)
|IEEE Standard 1364-1995/2001/2005
Based on the C language

IEEE P1800 “System Verilog” in voting stage & will be merged
with 1364

Primarily targeted for design of ASICs (Application-Specific 1Cs)

Related VHDL Standards

» 1076.1-1999:VHDL-AMS (Analog & Mixed-Signal
Extensions)

» 1076.2—-1996: Std.VHDL Mathematics Packages
» 1076.3-1997: Std.VHDL Synthesis Packages

» 1076.4-1995: Std.VITAL Modeling Specification
(VHDL Initiative Towards ASIC Libraries)

» 1076.6-1999: Std. for VHDL Register Transfer Level
(RTL) Synthesis

» 1164-1993: Std. Multi-value Logic System for VHDL
Model Interoperability

HDLs in Digital System Design

» Model and document digital systems

Behavioral model

describes 1/O responses & behavior of design

Register Transfer Level (RTL) model

data flow description at the register level

Structural model
components and their interconnections (netlist)

hierarchical designs
» Simulation to verify circuit/system design
» Synthesis of circuits from HDL models

using components from a technology library

output is primitive cell-level netlist (gates, flip flops, etc.)

Typical Product Development & Design
Verification Cycle Using HDLs

Behavioral
Simulation

RTL :
Simulation :

Logic and :
Timing

Timing

.. Implementation — ASIC, FPGA,etc. ...

Benefits of HDLs

» Early design verification via high level design verification

» Evaluation of alternative architectures

» Top-down design (w/synthesis)

» Reduced risk to project due to design errors

» Design capture (w/synthesis; independent of implementation)
» Reduced design/development time & cost (w/synthesis)

» Base line testing of lower level design representations

Example: gate level or register level design
» Ability to manage/develop complex designs
» Hardware/software co-design

» Documentation of design (depends on quality of designer comments)

Designer concerns about HDLs

» Loss of control of detailed design

» Synthesis may be inefficient

» Quality of synthesis varies between synthesis tools

» Synthesized logic might not perform the same as the HDL
» Learning curve associated with HDLs & synthesis tools

4

Meeting tight design constraints (time delays, area, etc.)

Design Space Issues

Area (chip area, how many chips, how much board space)
Speed/performance

Cost of product

Production volume

Design time (to meet market window & development cost)
Risk to project (working, cost-effective product on schedule)
Reusable resources (same circuit - different modes of
operation)

Implementation technology (ASIC, FPGA, PLD, etc.)
Technology limits

Designer experience

CAD tool availability and capabilities

vV VvV VvV VvV VvV Vv V9

vV Vv v Vv

DoD requirements on VHDL in mid 80s:

Design & description of hardware

Simulation & documentation (with designer comments)
Design verification & testing

Concurrency to accurately reflect behavior & operation of

hardware (all hardware operates concurrently)
as a result, all VHDL simulation is event-driven

Hierarchical design — essential for efficient, low-risk design
Library support — for reuse of previously verified components
Generic design - independent of implementation media
Optimize - for area and/or performance

Timing control — to assign delays for more accurate simulation
Portability between simulators & synthesis tools (not always true)

vV Vv v Vv

vV VvV VvV VvV VvV V9

Anatomy of a VHDL model

» “Entity” describes the external view of a component

» “Architecture’ describes the internal behavior and/or
structure of the component

» Example: [-bit full adder

Full Adder
» A
Sum >
Input 1B Output
“ports” “ports”

This view is captured by the VHDL “entity” (next slide)

Example: 1-Bit Full Adder

entity full_addl is (keywords in green)
port (-- I/O ports
a: in bit; -- addend input
b: in bit; -- augend input
. . . : 1/0 Port

cin: in bit; --carry input = 5ojarations
sum: out bit; -- sum output
cout: out bit); -- carry output |

end full_add] ; \
Comments follow double-dash
Signal type

Signal name Signal direction (mode)

Port Format - Name: Direction Signal_type;

» Direction

in - driven into the entity by an external source
(can read, but not drive, within the architecture)
out - driven from within the entity
(can drive, but not read, within the architecture)
buffer — like “out” but can read and drive

inout — bidirectional; signal driven both by external
source and within the architecture

(can read or drive within the architecture)

» Signal_type: any scalar or aggregate signal data type

Driving signal types
must match
ariven signal type

Built-in Data Types

» Scalar (single-value) signal types:
bit — values are ‘0’ or ‘I’
boolean — values are TRUE and FALSE
integer - values [-23! -~ +(23!-1)] on 32-bit host
» Aggregate of multiple scalar signal types:
bit vector — array of bits;
- must specify “range” of elements

Examples: l

signal b: bit_vector(7 downto 0);

signal c: bit_vector(0 to 7);

b <= c after | ns; --drive b with value of c

c <=“01010011”; --drive c with constant value

8-bit adder - entity

-- Internally - cascade 8 |-bit adders for 8-bit adder
entity Adder8 is
port (A, B:in BIT_VECTOR(7 downto 0); -- or (0 to 7)

Cin:in BIT;
Cout: out BIT;
Sum: out BIT_VECTOR(7 downto 0));
end AdderS; l
Cin
—2 A 8
8 Alj:ll:i”er Sum
’> B
Cqut

IEEE std _logic 1164 package

-- IEEE std_logic_1164 package defines nine logic states for signal values
-- models states/conditions that cannot be represented with the BIT type
-- VHDL “package” similar to a C “include” file
package Part STD LOGIC 1164 is
type STD _ULOGIC is ('U', -- Uninitialized/undefined value
‘X', -- Forcing Unknown
'0', -- Forcing O (drive to GND)
‘1", -- Forcing 1 (drive to VDD)
'Z', -- High Impedance (floating, undriven, tri-state)
‘W', -- Weak Unknown
'L', -- Weak O (resistive pull-down)
'H', -- Weak 1 (resistive pull-up)
' -- Don't Care (for synthesis minimization)
);
subtype STD LOGIC is resolved STD_ULOGIC; --see next slide
type STD_LOGIC VECTOR is array (NATURAL range <>) of STD_LOGIC;

STD_LOGIC/STD _LOGIC_VECTOR generally used instead of BIT/BIT_VECTOR

Bus resolution function

std_logic includes a “bus resolution function” to determine
the signal state where there are multiple drivers

function resolved (s : STD_ULOGIC _VECTOR) return STD_ULOGIC;

Driver L Driver Driver B value
A B
:01 (11 iZ’ ‘X’
Driver A:
L <= A: 010 |'X 10 |'X | Resolved
Sriver B Driver A 1" v |1 |1 |*x’ | Bus
L <= B; value Values
20100 11 12 X | for signal
lX! iX’ ax; ‘X’ ‘X’ I_

Example: 1-Bit Full Adder

ibrary ieee; --supplied library
use ieee.std logic_|164.all; --package of definitions

entity full_addl is

port (-- 1/O ports
a: in std_logic; -- addend input
b: in std_logic; -- augend input
cin: in std_logic; -- carry input
sum: out std_logic; -- sum output
cout: outstd logic); -- carry output

end full addl ;

Example: 8-bit full adder

ibrary ieee; -- supplied library
use ieee.std logic_|164.all; -- package of definitions
entity full_add8 is -- 8-bit inputs/outputs

port (a: instd logic_vector(7 downto 0);
b: instd logic_vector(/7 downto 0);
cin: in std_logic;
sum: out std_logic _vector(/ downto 0);
cout: out std_logic);

end full addS8 ; -
- Can use (0 to 7) if desired.

Architecture defines function/structure

ARCHITECTURE architecture_name OF entity _name IS

-- data type definitions (ie, states, arrays, etc.)
-- Internal signal declarations

-- component declarations

-- function and procedure declarations

BEGIN

-- behavior of the model is described here using:
-- component instantiations
-- concurrent statements
-- ProCcesses

END; --optionally: END ARCHITECTURE architecture _name;

Architecture defines function/structure

entity Half Adder is
port (X, Y :in STD _LOGIC :="0";
Sum, Cout : out STD LOGIC); -- formals
end;

-- behavior specified with logic equations
architecture Behave of Half Adder is

begin
Sum <= X xor Y; -- use formals from entity
Cout <= X and Y; -- “operators” are not “gates”
end Behave;

--operators and,or,xor,not applicable to bit/std _logic signals

Full adder behavioral architectures
(no circuit structures specified)

-- behavior expressed as logic equations
architecture dataflow of full _addl is
begin

sum <= a xor b xor cin;

cout <= (a and b) or (a and cin) or (b and cin);
end;
-- equivalent behavior, using an internal signal

architecture dataflow of full _addl is
signal x|:std_logic; -- internal signal

begin
x| <= a xor b; -- drive x|
sum <= x| xor cin; -- reference x|

cout <= (a and b) or (a and cin) or (b and cin);
end;

Event-driven simulation

» Signal “event” = change in signal value at a specified time

lk <= b and c after | ns;

Creates a “driver” for signal k, with scheduled events
“Event” = (value, time) pair
One driver per signal (unless a bus resolution function provided)

Data types must match (strongly typed)

Delay, from current time, can (optionally) be specified, as above

If no delay specified, infinitesimally-small delay “delta” inserted
k <= b and c;

(To reflect that signals cannot change in zero time!)

Delays are usually unknown in behavioral models and therefore
omitted

Concurrent Statements and
Event-Driven Simulation

» Statements appear to be evaluated concurrently

To model behavior of actual hardware elements

» Each statement affected by a signal event at time T is
evaluated
Time T is held constant while statements are evaluated

Any resulting events are “scheduled” in the affected signal
driver, to occur at time T + delay

After all statements evaluated, T is advanced to the time
of the next scheduled event (among all the drivers)

New values do not take effect until simulation time
advances to the scheduled event time, T + delay

Event-Driven Simulation Example
a <= b after Ins;
c <= a after Ins;
Time a b c¢
T ‘0 0 ‘0 -assume initial values all ‘0’ at time T
T+1 ‘0" ‘I’ ‘0O - external event changes b at time T+
T+2 ‘1" ‘I’ ‘0" - resulting event on a
T+3 ‘I” ‘I’ I - resulting event on c
SR e
b |

T+1 T+2 T+3

_I S

Event-Driven Simulation Example

a <= b; -- delay 6 inserted
¢ <= a; -- delay 6 inserted
Time a b ¢

T-1 ‘0 ‘0" ‘0" - assume initial values all ‘0’
T ‘0" ‘I’ ‘0" - external event changes b at time T
T+6 ‘I” ‘I’ ‘0’ - resulting event on a after 6 delay
T+26 ‘I’ ‘I’ ‘I’ - resulting event on c after 2" § delay
VTHDL simulators generally show time and d delays
a |
b |

c |
T1 T T+8 T+20

	Modeling Digital Systems with VHDL
	Hardware Description Languages
	Related VHDL Standards
	HDLs in Digital System Design
	Typical Product Development & Design Verification Cycle Using HDLs
	Benefits of HDLs
	Designer concerns about HDLs
	Design Space Issues
	DoD requirements on VHDL in mid 80s:
	Anatomy of a VHDL model
	Example: 1-Bit Full Adder
	Port Format - Name: Direction Signal_type;
	Slide Number 13
	Built-in Data Types
	8-bit adder - entity
	IEEE std_logic_1164 package
	Bus resolution function
	Example: 1-Bit Full Adder
	Example: 8-bit full adder
	Architecture defines function/structure
	Architecture defines function/structure
	Full adder behavioral architectures �(no circuit structures specified)
	Event-driven simulation
	Concurrent Statements and �Event-Driven Simulation
	Event-Driven Simulation Example
	Event-Driven Simulation Example

