Digital System on Chip (SoC) Computer-Aided Design Flow

ELEC 4200 – Digital Systems Design Victor P. Nelson

Progress of State of the Art

Year	Integration Level	# devices	Function
1938-46	Electromagnetic relays	1	
1943-54	Vacuum tubes	1	
1947-50	Transistor invented	1	
1950-61	Discrete components	1	
1961-66	SSI	10′s	Flip-flop
1966-71	MSI	100′s	Counter
1971-80	LSI	1,000′s	uP
1980-85	VLSI	100,000's	uC
1985-90	ULSI*	1M	uC*
1990	GSI**	10M	SoC
2011	Intel Ten-Core <u>Xeon</u>	2.6G	CPU
2017	Nvidia GV100 Volta	21.1G	GPU

Intel[®] Core[™] i7 Processor

Performance/Features:

- 8 processing threads via Intel® Hyper-Threading Technology (HT)
- 4 cores
- Turbo Mode operation
- Intel[®] QuickPath Interconnect (Intel[®] QPI) to Intel[®] X58 Express Chipset
- Integrated Memory Controller (IMC) – 3ch DDR3
- 7 more SSE4 instructions
- Overspeed Protection Removed

Intel Core i7 High End Desktop Platform Overview

Apple "A8" SoC (System on Chip)

- Used in *iPhone6* & *iPhone6* Plus
- Manufactured by TSMC
 - 20nm, 89mm², 2B transistors
- Elements (unofficial):
 - 2 x ARM Cyclone ARMv8 64-bit cores running at 1.4GHz
 - IMG PowerVR 4-core GX6450 GPU
 - L1/L2/L3 SRAM caches
- Other devices
 - 1 GB LPDDR3 SDRAM
 - 16 to 128GB flash
 - Qualcomm MDM9625M LTE modem
 - M8 motion coprocessor (ARM Cortex M3 uC)
 - iSight camera
 - Near field communications chip (for Apple Pay)
 - User interface and sensors, accelerometers, gyro
 - Wi-Fi and Bluetooth

Internet of Things (IoT)

Socio-Economic Benefits

- Automation (higher productivity)
- Smart monitoring, control and maintenance (higher efficiency, lower cost, higher quality, better optimisation/outcomes)
- Better safety (early warning)
- Higher responsiveness (dynamic response to varying demands)
- Huge and varied applications in industry, agriculture, health, transport, infrastructure, smart living, consumer etc.

IoT: Connecting the Physical and Digital Worlds

Sensing and Controlling

- Integrated sensors, memory and processing
- Low power systems
- Little Data

Things ("Edge" Devices)

Wireless Network

- High throughput
 networks
- Low power wireless networks

Cloud

- High performance efficient servers
- High capacity storage
- Software as a service
- Big Data

Note all the simulation (design verification) - helps to ensure the design works and assists in debugging design errors
To simulate a circuit, we must describe it in a manner that can be interpreted and understood by the simulator (HDL/netlist)

Xilinx/Altera FPGA/CPLD Design Tools

• Create HDL model of design behavior/structure

- Xilinx "*Vivado*" Integrated Software Environment
- Context-sensitive text editor

• Simulate designs in *Active-HDL or Modelsim*

- Behavioral models (VHDL, Verilog)
- Synthesized netlists (VHDL, Verilog)
 - Requires "primitives" library for the target technology
- Synthesize primitive-level netlist from a behavioral model
 - *Xilinx Vivado* has its own synthesis tool (*Xilinx ISE* for older FPGAs)
 - *Leonardo (Levels 1,2,3)* has libraries for most FPGAs (ASIC-only version currently installed)
- Vendor tools for back-end design
 - Map, place, route, configure device, timing analysis, generate timing models
 - Xilinx *Vivado* formerly *Integrated Software Environment* (ISE)
 - Altera *Quartus II & Max+Plus2*
- Higher level tools for system design & management
 - *Xilinx Platform Studio* : SoC design, IP management, HW/SW codesign
 - Mentor Graphics FPGA Advantage

Field Programmable Gate Arrays

- Configuration
 Memory
- Programmable Logic
 Blocks (PLBs)
- Programmable Input/Output Cells
- ProgrammableInterconnect

Typical Complexity = 5M - 1B transistors

Zynq-7000 SoC: Dual-core ARM Cortex-A9 MPCore (up to 1GHz) Zynq UltraScale+ MPSoC:

- Quad-core ARM Cortex-A53 MP (up to 1.5 GHz)
- Dual-core ARM Cortex-R5 MPCore (up to 600MHz)
- GPY ARM Mali-400 MP2 (up to 667MHz)

FPGAs

Zynq-7000 SoC Processor System

© Xilinx

Xilinx FPGA families (2015)

	Spartan-6	Artix-7	Kintex-7	Virtex-7	Kintex Ultra Scale	Virtex UltraScale
Logic Cells	147,443	215,360	477, 760	1,954,560	1,160,880	4,432,680
BlockRAM	4.8Mb	13Mb	34Mb	68Mb	76Mb	132.9Mb
DSP Slices	180	740	1,920	3,600	5,520	2,880
DSP Performance (symmetric FIR)	140GMACs	930GMACs	2,845GMACs	5,335GMACs	8,180 GMACs	4,268 GMACs
Transceiver Count	8	16	32	96	64	120
Transceiver Speed	3.2 Gb/s	6.6 Gb/s	12.5 Gb/s	28.05 Gb/s	16.3 Gb/s	32.75 Gb/s
Total Transceiver Bandwidth (full duplex)	50 Gb/s	211 Gb/s	800 Gb/s	2,784 Gb/s	2,086 Gb/s	5,886 Gb/s
Memory Interface (DDR3)	800	1,066	1,866	1,866	2,400	2,400
PCI Express® Interface	x1 Gen1	x4 Gen2	x8 Gen2	x8 Gen3	x8 Gen3	x8 Gen3
Analog Mixed Signal (AMS)/XADC	-	XADC	XADC	XADC	System Monitor	System Monitor
Configuration AES	Yes	Yes	Yes	Yes	Yes	Yes
I/O Pins	576	500	500	1,200	832	1,456
I/O Voltage	1.2V – 3.3V	1.2V – 3.3V	1.2V – 3.3V	1.2V – 3.3V	1.0 – 3.3V	1.0 – 3.3V

Digikey.com (4/03/18):

Spartan-3A XC3S50A: \$8.05 Spartan-6 XC6SLX4: \$11.48 Artix-7 XC7A100T: \$136.50 Kinetix-7 XC7K70T: \$139.65 Virtex7 XC7V1140T-G2FLG1925E: \$32,815.17

Xilinx FPGA families (2015)

	Spartan-6	Artix-7	Kintex-7	Virtex-7	Kintex UltraScale	Virtex Ultra Scale
Logic Cells	147,443	215,360	477, 760	1,954,560	1,160,880	4,432,680
BlockRAM	4.8Mb	13Mb	34Mb	68Mb	76Mb	132.9Mb
DSP Slices	180	740	1,920	3,600	5,520	2,880
DSP Performance (symmetric FIR)	140GMACs	930GMACs	2,845GMACs	5,335GMACs	8,180 GMACs	4,268 GMACs
Transceiver Count	8	16	32	96	64	120
Transceiver Speed	3.2 Gb/s	6.6 Gb/s	12.5 Gb/s	28.05 Gb/s	16.3 Gb/s	32.75 Gb/s
Total Transceiver Bandwidth (full duplex)	50 Gb/s	211 Gb/s	800 Gb/s	2,784 Gb/s	2,086 Gb/s	5,886 Gb/s
Memory Interface (DDR3)	800	1,066	1,866	1,866	2,400	2,400
PCI Express® Interface	x1 Gen1	x4 Gen2	x8 Gen2	x8 Gen3	x8 Gen3	x8 Gen3
Analog Mixed Signal (AMS)/XADC	-	XADC	XADC	XADC	System Monitor	System Monitor
Configuration AES	Yes	Yes	Yes	Yes	Yes	Yes
I/O Pins	576	500	500	1,200	832	1,456
I/O Voltage	1.2V – 3.3V	1.2V – 3.3V	1.2V – 3.3V	1.2V - 3.3V	1.0 – 3.3V	1.0 – 3.3V

Digikey.com (1/14/15): Spartan-3A XC3S50A: \$6.44 Spartan-6 XC6SLX4: \$11.48 Artix-7 XC7A100T: \$125.58; XC7A200T: \$186.25 Kinetix-7 XC7K70T: \$133.90; XC7K480T: \$2,908.75 Virtex7 XC7V2000T-G2FLG1925E: \$39,452.40