ELEC 4200 Lab#7 Hierarchical Modeling & Synthesis

SAMUEL GINN
COLLEGE OF ENGINEERING

Specifications(1)

- Write a top-level VHDL model to combine your previous models
 - Hex to 7-segment decoder (Lab 3)
 - Moore FSM (Lab 4)
 - N-bit counter (Lab 5)
 - Register File (Lab 6)
- Note: The block diagram is not complete and only shows signals that connect in-between the different models.

Specifications(2)

- The overall circuit will be a time-multiplexed display that will display data individually to the four 7-segment displays
- Design specs
 - Hex to 7-segment decoder will convert value from the register file and supplied the A-G values to the 7-segment display
 - The Register file will take write address, data, and write enable inputs from switches (address, data) and a push button (write enable)
 - The N-bit counter MSB will supply the enable input to the FSM to advance the FSM every 2^N clock cycles
 - Your FSM should already contain the one shot
 - Use the parameterized register/counter with inputs tied such that the model is always counting.
 - The Moore FSM will supply
 - » Active LOW enables (AN0-3) to 7 segment display to cycle through the four displays
 - » Read address (count value) to the register file.
 - Clock input for FSM and counter will come from the 100Mhz oscillator

Pre-lab Assignment

- Write a top level VHDL model to combine your previous VHDL models as per the specifications
- Determine the FPGA pin numbers for register file inputs
 - Address and Data inputs from DIP switches
 - Write Enable from Push Button

Lab Exercise(1)

- Simulate your VHDL model and verify your design using Aldec Active-HDL.
 - Set the Register File generic values to M=2 and N=4 for design verification.
- Synthesize and implement your design for the Artix-7 FPGA on the Nexys4 board.

Lab Exercise(2)

- You will have to experiment with the "N" value for the N-bit counter to find a speed at which the display multiplexes at a reasonable speed.
 - The display should be fast enough such that all four displays appear on at the same time, but should be slow enough to prevent blurring
 - Use the range 8<N<25 for a starting point.
- From the implementation report record the number of Slices, LUTs, and FF/latches for each value of the N-bit counter you try.
- Download your design to the FPGA and demonstrate the working circuit to the GTA

Report Guidelines

- Be sure to include all sections required by the lab manual guidelines. In addition be sure your report includes the following:
 - Verified VHDL model (Top-level and any changes needed to other models)
 - Annotated screenshots of your Aldec Active-HDL simulation results.
 - Synthesis results (LUTs, FFs, slices, etc)
 - Value of N used for the counter
 - Answers to the following questions...
 - 1. Do you think it would have been faster to create the circuit as an integrated solution instead of component by component?
 - 2. Which would be easier when it comes to debugging the circuit?

