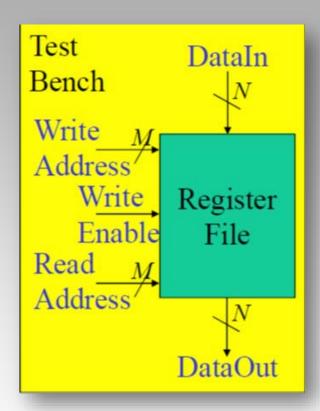
ELEC 4200 Lab#6 Parameterized VHDL Modeling & **Synthesis of Register File with Testbench**

UNIVERSITY


SAMUEL GINN College of Engineering

- References you may need:
 - **Overview of FPGA Editor.pdf**
 - Adding Probes in FPGA Editor.pdf

Specifications

- Write a parameterized VHDL model for a register file and a test-bench for simulation
- A register file is essentially a small RAM
- Specification for the parameterized register file
 - 2^M registers of N-bits each
 - M write address bits & an active high Write Enable
 - » On the <u>rising edge</u> of Write Enable, contents of register selected by write address = Data inputs
 - M read address bits
 - » Data outputs = contents of register at selected read address

Pre-lab Assignment

- Write a VHDL model for the parameterized register file on the previous slide
- Write a parameterized test-bench to instantiate your register file component and apply to it the memory test algorithm on the following slide.
- Determine the FPGA pin numbers for inputs/outputs
 - Assuming M=2 and N=4
 - » Address and Data Inputs → Switches
 - » Data Outputs → LEDs
 - Write Enable → Push Button**
 - ** Since data is to be written on the rising edge of *Write Enable*, that signal is effectively a "clock". Therefore, *Write Enable* should be supplied via a clock-capable FPGA pin.
 - Pin P17 is clock-capable and is connected to push button BTNL on the Nexys4 DDR board.

Memory Testing Algorithm

- t (write address as data)
- ② ↑ (read address, write inverted address as data)
- ⊕ (read inverted address, write address as data)
- ♠ ↑(read address)

Notes:

This is a standard notation for memory test algorithms where each step above consists of one or more read and/or write operations to the complete memory address space to detect faults (or in your case design errors) in the memory.

- \uparrow = indicates ascending addresses (from 0 to N-1)
- ψ = indicates descending address (from N-1 to 0)
- \updownarrow = indicates addressing in either direction

Lab Exercise

- Simulate your VHDL test bench and model and verify your design using Active-HDL.
 - Use two sets of parameters (M=3, N=3 and M=2, N=4) to verify the design via simulation.
- Synthesize and implement your register file (but NOT the test bench) for the Artix-7 FPGA (on the Nexys4 board).
 - Use M=2, N=4 for synthesis
 - Record the Slices, LUTs, and FF/latches from the implementation report.
 - Note how the memory cells were implemented, i.e. were they implemented with latches, flip-flops, LUTs, or block RAMs?
- Demonstrate your working circuit to the GTA

Report Guidelines

- Be sure to include all sections required by the lab manual guidelines. In addition be sure your report includes the following:
 - Verified VHDL models
 - Annotated screenshots of your Aldec Active-HDL simulation results for different values of M & N
 - Implementation results (LUTs, FFs, slices, etc), including components used to implement the memory cells.
 - Answers to the following questions…
 - 1. How difficult was it to parameterize your model? Do you feel that the time saved in debugging made up for it?
 - 2. Do you think this approach would apply to a larger project?
 - 3. Do you think it is possible to over-parameterize a model?

