
1

C. E. Stroud ELEC 4200 1

Combinational Logic Design Process
• Create truth table from specification
• Generate K-maps & obtain logic equations
• Draw logic diagram (sharing common gates)
• Simulate circuit for design verification

– Debug & fix problems when output is incorrect
• Check truth table against K-map population
• Check K-map groups against logic equation product terms
• Check logic equations against schematic

• Circuit optimization for area and/or performance
– Analyze verified circuit for optimization metric

• G, GIO, Gdel, Pdel

– Use Boolean postulates & theorems

• Re-simulate & verify optimized design

C. E. Stroud ELEC 4200 2

K-mapping & Minimization Steps
Step 1: generate K-map

– Put a 1 in all specified minterms
– Put a 0 in all other boxes (optional)

Step 2: group all adjacent 1s without including any 0s
– All groups (aka prime implicants) must be rectangular and

contain a “power-of-2” number of 1s
• 1, 2, 4, 8, 16, 32, …

– An essential group (aka essential prime implicant) contains
at least 1 minterm not included in any other groups

• A given minterm may be included in multiple groups

Step 3: define product terms using variables common to
all minterms in group

Step 4: sum all essential groups plus a minimal set of
remaining groups to obtain a minimum SOP

C. E. Stroud ELEC 4200 3

K-map Minimization Goals
• Larger groups:

– Smaller product terms
• Fewer variables in common

– Smaller AND gates
• In terms of number of inputs

• Fewer groups:
– Fewer product terms

• Fewer AND gates
• Smaller OR gate

– In terms of number of inputs

• Alternate method:
Group 0s

• Could produce
fewer and/or
smaller product
terms

Invert output
• Use NOR instead

of OR gate

C. E. Stroud ELEC 4200 4

Circuit Analysis
• We can implement different circuits for same logic function that are

functionally equivalent (produce the correct output response for all
input values)
– Which implementation is the best?

• Depends on design goals and criteria

• Area analysis
– Number of gates, G (most commonly used)
– Number of gate inputs and outputs, GIO (more accurate)

• Bigger gates take up more area

• Performance analysis (worst case path from inputs to outputs)
– Number of gates in worst case path from input to output, Gdel

– More accurate delay measurement per gate
• Propagation delay = intrinsic (internal) delay + extrinsic (external) delay
• Relative prop delay, Pdel = # inputs to gate (intrinsic) + # loads (extrinsic)

C. E. Stroud ELEC 4200 5

Circuit Analysis Example

• From previous example:
Z=(A+B’)C+A’BC’
– # gates: G = 7

– # gate I/O: GIO = 19

– Gate delay: Gdel = 4
• worst case path: BZ

– Prop delay: Pdel = 12
• worst case path: BZ

Z

A
B
C

A+B’
(A+B’)C

A’BC’

B’

A’

C’

2

2

2 1+1

1+1

1+1

2+1
2+1

3+1

2+0

C. E. Stroud ELEC 4200 6

Design Verification Guidelines
• Use all audits and analysis aids possible to help find potential design bugs

– Investigate and correct all errors/warnings
• Simulate thoroughly but use stimuli that “eat their way into the design”

testing one function at a time
– more important for complex circuits

• When circuit doesn’t work, see what works and what doesn’t to narrow
down the search space for the problem

– Which outputs work
– Which outputs fail and under what conditions
– Monitor lots of internal nodes
– Additional simulations (with different vectors) can be helpful

• “Debugging is just like solving a puzzle”
– “If something doesn’t look right, stop and check it out”

• Don’t overlook potential bugs

– “When you’ve found the problem, everything starts makes sense”
• Always re-run audits and simulation after correcting any problem (or after

making any changes)
– Another bug could be lurking, or
– The fix may have messed up something else

2

C. E. Stroud ELEC 4200 7

Sequential Logic Design Steps
• Derive circuit state diagram from design specs
• Create state table
• Choose flip-flops (D, T, SR, JK)
• Create circuit excitation table

– use flip-flop excitation tables

• Construct K-maps for:
– flip-flop inputs
– primary outputs

• Obtain minimized SOP equations
• Draw logic diagram
• Simulate to verify design & debug as needed
• Perform circuit analysis & logic optimization

C. E. Stroud ELEC 4200 8

Flip-Flop Excitation Tables & State
Diagrams

Q Q+ D T S R J K

0 0 0 0 0 X 0 X

0 1 1 1 1 0 1 X

1 0 0 1 0 1 X 1

1 1 1 0 X 0 X 0

0 1

D=1

0

10

0 1

T=1

1

00

0 1

SR=10

01

X00X 0 1

JK=1X

X1

X00X

C. E. Stroud ELEC 4200 9

Sequential Design Example
Design a 3-bit gray code counter with

active low synchronous reset (R)

001

101

011

010

000

111 110

100

1

1

1

1

1

1

1

R=1

R=0

0

0

0

00

0

State Diagram Inputs
R

Current state
(X Y Z)

Next state
(X Y Z)

0 XXX 000

1 000 001
1 001 011

1 010 110
1 011 010

1 100 000
1 101 100
1 110 111

1 111 101

State Table

State order:
X Y Z

0

C. E. Stroud ELEC 4200 10

3-bit Gray Code Counter

• Choose flip-
flops:
– Let X be a

JK
– Let Y be a D
– Let Z be a

SR
• Create circuit

excitation
table

Inputs
R

Current state
(X Y Z)

Next state
(X Y Z)

QX
Jx Kx

QY
Dy

QZ
Sz Rz

0 X X X 0 0 0 0 1 0 0 1
1 0 0 0 0 0 1 0 X 0 1 0

1 0 0 1 0 1 1 0 X 1 X 0
1 0 1 0 1 1 0 1 X 1 0 X

1 0 1 1 0 1 0 0 X 1 0 1
1 1 0 0 0 0 0 X 1 0 0 X
1 1 0 1 1 0 0 X 0 0 0 1
1 1 1 0 1 1 1 X 0 1 1 0

1 1 1 1 1 0 1 X 0 0 X 0

C. E. Stroud ELEC 4200 11

3-bit Gray Code Counter (cont)
• Generate K-Maps & obtain minimized SOPs

1 1 1 1

1 1 1 1

1 0 0 0

X X X X

00 01 11 10

00

01

11

10

RX
YZ

X 1

1 X

00 01 11 10

00

01

11

10

RX
YZ

1 1 1 1

1 1 1 1

X 1

1 X

00 01 11 10

00

01

11

10

RX
YZ

X X X X

1

00 01 11 10

00

01

11

10

RX
YZ

1

1 1 1

00 01 11 10

00

01

11

10

RX
YZ

Jx = RYZ’

Kx = R’ + Y’Z’

Dy = RYZ’ + RX’Z Sz = RXY + RX’Y’

Rz = R’ + XY’ + X’Y

Further reductions:
Rz = R’ + XY
Sz = R(XY)’

= (R’ + XY)’
= Rz’

C. E. Stroud ELEC 4200 12

3-bit Gray Code Counter (cont)
• Logic diagram
• Then design

verification via
logic simulation
– Debug as needed

to obtain
working circuit

– Update logic
diagram, logic
equations, etc. to
reflect fixes

Jx X

X’Clk

Kx

Sz Z

Z’Clk

Rz

Dy Y

Y’Clk

R

X
Y

Y’
Z’

Y
Z’

X’
Z

3

C. E. Stroud ELEC 4200 13

Sequential Logic Models
• Huffman model consists

of two types:
– Mealy model (aka Mealy

machine)
• Outputs are function inputs

and current state
– Outputs can change when

inputs change or when
current state changes

– Moore model (aka Moore
machine)

• Outputs are function of
current state only

– Outputs can change only
when current state
changes

Primary
Inputs

Next
State

Primary
Outputs

Current
State

Comb
Logic

Flip-
Flips

Primary
Inputs

Next
State

Primary
Outputs

Current
State

Output
Logic

Flip-
Flips

Next State
Logic

only for
Mealy

C. E. Stroud ELEC 4200 14

Mealy & Moore State Diagrams
• Mealy model

– Outputs associated
with state transition

– Output values shown
with inputs

• Moore model
– Outputs associated

with states only

– Output values shown
with states

00

10 01

0/1 0/1

0/0

1/1
1/1

1/0

Input
/

Output

00/1

10/0 01/0

0 0

0

1 1

1

State
order

XY

States
/

Output

C. E. Stroud ELEC 4200 15

Mealy & Moore State Tables
In X Y X+ Y+ DX DY OMealy OMoore

0 0 0 0 1 0 1 1 1

0 0 1 1 0 1 0 0 0

0 1 0 0 0 0 0 1 0

1 0 0 1 0 1 0 1 1

1 0 1 0 0 0 0 1 0

1 1 0 0 1 0 1 0 0

0 1 1 X X X X X X

00

10 01

0/1 0/1

0/0

1/1
1/1

1/0

00/1

10/0 01/0

0 0

0

1 1

1
Note: next state (next state logic) is same for
both Mealy & Moore – only output is different

C. E. Stroud ELEC 4200 16

Mealy & Moore Design Examples

00 01 11 10

0 0 1 X 0

1 1 0 X 0

00 01 11 10

0 1 0 X 0

1 0 0 X 1

In
X Y

DX = In’Y + InX’Y’

In
X Y

DY = InX + In’X’Y’

00 01 11 10

0 1 0 X 1

1 1 1 X 0

00 01 11 10

0 1 0 X 0

1 1 0 X 0

In
X Y

In
X Y

OMealy = In’Y’ + InX’

OMoore = X’Y’

In this example the Dx and Dy circuits are the same for both Mealy and Moore
But the outputs circuits are different with the Moore being a function of X and Y only

C. E. Stroud ELEC 4200 17

Mealy & Moore Design Examples
DX = In’Y + InX’Y’

DY = InX + In’X’Y’
OMealy = In’Y’ + InX’ OMoore = X’Y’

X

X

Y

Y
X

In

Y

Y

X

Y
X

X

X

Y

Y
X

In

Y

Y

X

Y
X

Y

X OMoore
Y

X

OMealy

Note: OMealy is a function of In but OMoore is not a function of In

ClkClk

C. E. Stroud ELEC 4200 18

Flip-Flop Initialization
• Preset (aka set) => Q+ = 1
• Clear (aka reset) => Q+ = 0
• Some flip-flops have:

– Both preset and clear (set and reset)
– A preset or a clear
– Neither (JK & SR flops have set/reset functions)

• Preset and/or clear can be
– Active high or active low
– Synchronous => with respect to active edge of clock
– Asynchronous => independent of clock edges

• Initialization important for:
– logic simulation to remove undefined logic values

• 2, 3, U, etc.
– system operation to put system in a known state

D

Clk

Q

Q

Pre

Clr

Typical logic symbol
with active high preset
and active low clear
Cannot determine sync
or async from symbol

4

C. E. Stroud ELEC 4200 19

Synchronous vs. Asynchronous
• Synchronous =>

states of memory
elements change
only with respect to
active edge of clock

• Asynchronous =>
states of memory
elements can
change without an
active edge of clock
– Asynchronous

designs often have
timing problems

D

Clk

Q

Q

Pre

Clr

Example: assume
active high sync
preset
and active low
async clear

Clk

D

Pre

Clr

Q

C. E. Stroud ELEC 4200 20

System-Level Timing
• System set-up time: Pdeli + Pbufi + tsu - Pclk(min)
Pdeli + Pbufi + tsu

• System hold time: th + Pclk - Pdeli(min) - Pbufi(min)
 th + Pclk

• System clock-to-output: tco + Pdelo + Pbufo + Pclk

• Minimum times are difficult to guarantee
– Typically assume 0

comb
logic
Pdeli

Data

Clock

comb
logic
Pdelo

Outputtsu tco

Cbig Pclk

C. E. Stroud ELEC 4200 21

System-Level Timing
• System set-up time: Pbufi + tsu(latch) - Pclk(input)min

• System hold time: th(latch) + Pclk(input) - Pbufi(min)

• System clock-to-output: tco + Pbufo + Pclk(output)

• Improvement techniques:
– Re-clock signals onto/off subcircuit, chip, PCB, or system
– Fanout clock into input, main, and output clocks
– 0-hold-time latches on input signals

comb
logic
Pdeli

Data

Clock

comb
logic
Pdelo

Output

Cbig Pclk

LAT
en

