
Analog Input/Output 
Subsystem Design

Reference: 
STM32F4xx Reference Manual 

(ADC, DAC chapters)
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Typical analog input subsystem
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Analog subsystem properties

 Accuracy: degree to which measured value differs 
from true value

 Resolution/precision: degree to which two conditions 
can be distinguished
 Related to #bits in digital value

 Range: minimum to maximum “useful” value
 Linearity: y = Ax + B  (correction req’d if not linear)

 piecewise linear approximation over different ranges
 Repeatability: same measurement for a given value

 affected by hysteresis or other phenomena
 Stability: value changes other than due to the 

property being measured (eg. T affecting P)



Analog to digital conversion errors
May need to correct in software

Offset error

Gain error

Nonlinearity error -
Unequal distances
between transition points

Quantization error:
Difference between digital 

& analog values
Usually want ± ½ LSB



Transducers
 Convert physical quantity to electrical signal
 Self-generating – generates voltage/current signal
 Non-self-generating – other property change (ex. R)

 Examples:
 Force/stress (strain gage)
 Temperature (thermocouple, thermistor, semicond.)
 Pressure 
 Humidity (gypsum block)
 Smoke
 Light (phototransistor, photoconductive cell)
 Acceleration (accelerometer)
 Flow
 Position (potentiometer, displacement)



Temperature sensors

 Thermocouple – “Seeback EMF produced  by 
heating junction of dissimilar metals (μV)

 Thermistor – mix of materials in ceramic

 Metal conductor:
)](1[ 00 TTRRt −+= α

+    V     -

[ ]ToT
t eRR

/1/1
0

−
= β

•Negative temperature coefficient: R^ with Tv
•Linear over small range

•Positive temp. coefficient: R^ with T^



-
+

Vcc

≈VBE

VBE

VBE

Semiconductor temperature sensor





=

Is
Ic

q
kTVBE ln

Base-emitter voltage approximately proportional to T

TVBE ∝



Analog Devices AD590 Temperature 
Transducer

 IC generates current proportional to 
temperature

 Generated current IT is linear: 1 μa/oK

Example:
Design a temperature monitor with 
output in the range [0v..4v] over 
temperature range [-20oC .. +60oC]

(Use summing amplifier)

IT



Strain Gage

 Measure stress by measuring change or 
resistance of a conductor due to change of its 
length/area

 Compression: L decreases, A increases
 Elongation: L increases, A decreases
 “Gage factor” (sensitivity):
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Wheatsone bridge
 Measure small resistance changes
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Some pressure sensors use bridge with all 4 R’s variable

“Balanced”: Vo = 0 when R=Rs



Signal conditioning

 Produce noise-free signal over “working” 
input range 
 Amplify voltage/current levels
 Bias (move levels to desired range)
 Filter to remove noise
 Isolation/protection  (optical/transformer)
 Common mode rejection for differential signals
 Convert current source to voltage

 Conditioning often done with op amp circuits



Operational amplifiers

 Amplifier types:
 Inverting amplifier
 Non-inverting amplifier
 Summing amplifier
 Differential amplifier
 Instrumentation amplifier

 Tradeoffs
 Inverting/noninverting
 High input impedance
 Defined gain
 Comon mode rejection



Basic op amp configurations
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Summing amplifier
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Potential application:
V1 = input voltage
V2/R2 provide an “offset” to V1/R1
(ex. to produce Vo=0 at some V1 value) 



Differential amplifier
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Choose R1 to set input impedance; R2 to set gain

Eliminates “common mode”
voltage (noise, etc.)



Instrumentation amplifier
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Sample-and-hold

 Required if A/D conversion slow relative to 
frequency of signal:
 Close switch to “sample” Vin (charge C to Vin)

 Aperture (sampling) time = duration of switch closure
 Open switch to “hold” Vin

converterVin
C



Analog to digital conversion

 Given: continuous-time electrical signal 
v(t), t >=0

 Desired: sequence of discrete numeric values that 
represent the signal at selected sampling times :

v(0), v(T), v(2T),…v(nT)
 T = “sampling time”: v(t) “sampled” every T seconds
 n = sample number
 v(nT) = value of v(t) measured at the nth sample time and 

quantized to one of 2k discrete levels



A/D conversion process
v(t)

t T  2T  3T  4T  5T  6T  7T

1    2    3    4    5    6     7

v(t*)

t*

n

v(nT)

Input signal Sampled signal

(3/4)Vref

Sampled & quantized
Sampled data sequence:
n= 1    2    3    4    5    6   7
d=10, 10, 10, 10, 11, 11, 11

Binary values of d, where 
v(nT) = (d/4)Vref

(2/4)Vref

(1/4)Vref

(0/4)Vref



A/D conversion parameters

 Sampling rate, F   (sampling interval T = 1/F)
 Nyquist rate ≥ 2 x (highest frequency in the signal) 

 to reproduce sampled signals
 CD-quality music sampled at 44.1KHz 

(ear can hear up to about 20-22KHz)
 Voice in digital telephone sampled at 8KHz

 Precision (# bits in sample value)
 k = # of bits used to represent sample values
 “precision”: each step represents (1/2k)×Vrange

 Ex. Temperatures [-20OC…+60OC]: if k=8, precision = 80OC/256 = 0.3125OC
 “accuracy”: degree to which converter discerns proper level 

(error when rounding to nearest level)



Analog to digital conversion

 More difficult than D/A conversion
 Tradeoffs:
 Precision (# bits)
 Accuracy
 Speed (of conversion)
 Linearity
 Unipolar vs. bipolar input
 Encoding method for output
 Cost

 Often built around digital to analog converters



Digital to analog conversion

R-2R Ladder 
Network

(Reference)

Equivalent 
resistance = R I/2n+1

Equivalent 
resistance = R

Current to
voltage
conversion

Number = bnbn-1…b1b0 = bn*2n  + bn-1*2n-1 + …. + b1*21 + b0*20



Flash A/D conversion
 N-bit result requires 2n comparators and resistors:

encoder

Vin

...

Vref

n-bit
output

Identify bit at which
comparator outputs
change from 1->0.

Comparator output = 1 if Vin > Vref*(N/2n)
(N = 1, 2, …. 2n-1)
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“Thermometer code” – bottom k bits = 1, upper 2n-1-k bits = 0



Dual-slope conversion
 Use counter to measure time required to 

charge/discharge capacitor (relatively low speed).
 Charging, then discharging eliminates non-linearities 

(high accuracy).
 Relatively low cost

Vin

control

counter

-Vref

clock

n-bit output

-
+

comparator



1. SW1 connects Vin for fixed time T
 C charges with current = Vin(t)/R

Dual-slope conversion steps
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2. SW1 connects –Vref until Vo discharges to 0.
 C discharges with constant current = -Vref/R

 When Vo(T+t1) = 0:

Dual-slope conversion steps
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Successive approximation analog to 
digital converter (ADC)

1. Successive Approximation Register 
(SAR) sets DN-1 = 1

2. SAR outputs DN-1 … D0, converted
by DAC to analog VDAC

3. VDAC is compared to VIN
4. Comparator output resets DN-1 to 0

in SAR if VDAC < VIN
5. Repeat 1-4 for DN-2 … D0 

(one clock period per bit)

• Final SAR value DN-1 … D0 is 
digital representation of VIN

End of 
conversion

VIN captured in S/H

VDAC

• Determine one bit at a time, from MSB to LSB
Used in most microcontrollers (low cost)

VIN



Sigma Delta ADC

 High resolution (16 or more bits)
 High integration
 Reasonable cost
 Often used to sample CD-quality audio 
 16-bit resolution @ 44.1Ksamples/sec

 Oversampling used to spread noise over 
wider frequency range

 Digital filtering eliminates the noise
 Gives good dynamic range with simple ADC



Sigma-Delta A/D Converter

Comparator



Sigma-Delta ADC

High rate bitstream

Density of 1’s at 
modulator output 
proportional to the 
input signal.

Filtering extracts
Info from serial
data stream.
(lower rate)

Step 1

Step 2



Modulator operation

 Slope of integrator output depends on 
magnitude of Vin
 “sigma” => summing/integration

 Compare integrator output to 0v, producing 
“1” if positive and “0” if negative (1-bit ADC)
 “delta” = difference

 Density of 1’s in the bitstream proportional to 
magnitude of input voltage Vin



Example

Filtering determines average voltage (density of 1s) in bitstream



Maxim MAX1402 Sigma-Delta ADC



STM32F4xx D/A converter

 8 or 12-bit modes
 2 DACs/channels

 Left/Right channel
 Concurrent 

conversions
 Sample triggers:

 SW trigger
 Timer triggers
 EXTI trigger

 DMA support
 Memory -> DHRx

Data 
Holding 
Reg Data Output

Reg

External
Reference  (internal reference also available)

Triggers



DAC data formats

DHR name (x = 1/2 channel):
DAC_DHR8Rx
DAC_DHR12Lx
DAC_DHR12Rx

Single DAC Channel

Dual DAC Channels
DHR name:
DAC_DHR8RD
DAC_DHR12LD
DAC_DHR12RD



DAC data conversion
Write data to DAC_DHRx register (trigger disabled: TEN=0):



DAC control/status registers
DAC_CR (Upper half = channel 2; Lower half = channel 1)

Channel
Enable

Trigger
Enable*

Trigger
Select

DAC_SWTRIGR = Software trigger – start when bit set by SW (reset by HW)

DAC_SR = Status Register – Indicates DMS underrun (no data before trigger)

* If TEN=0, start when DHR written



STM32F4xx Successive-Approximation ADC
 12-bit successive approximation A/D converter

 Programmable precision: 6-8-10-12 bits
 Conversion time = #bits + 3 clock cycles

 1.2 Msamp/sec @VDDA=1.8-2.4v
 1.4 Msamp/sec @VDDA=2.4-3.6v

 “Regular” and “Injected” channel groups
 Injected channels processed after, or between, regular channels

 19 multiplexed input channels 
 16 external sources
 3 internal sources: VBAT,VREFINT, temperature sensor

 External trigger option (16 sources)
 Multiple conversion modes

 Single, continuous, scan, discontinuous
 DMA and/or interrupts are supported

 DMA often used in “scan” mode, to unload the single data register



STM32 ADC 
block diagram

ADC
Inputs

Regular
Channel
Triggers

Injected
Channel
Triggers

ADC

Interrupts

Results -
injected,
regular

Clock -
prescaled fAPB1

Reference
voltage

Analog 
watchdog

DMA request



ADC clocking
 Analog circuitry clock: ADCCLK

 Derive from APB2 clock ÷ prescale
 fADC = fPCLK2/2, /4, /6, /8 (bits ADCPRE in ADC_CCR)
 fADC required range = 0.6MHz – 18MHz (VDDA = 1.8 to 2.4v)

= 0.6MHz – 36MHz (VDDA = 2.4 to 3.6v)
 Sample time (ts) = 3 to 480 clock cycles (8 choices)

 ts = 0.10µs to 16µs @fADC=30MHz
 Set for each channel in ADC_SMPR1, ADC_SMPR2

 Conversion time = ts + n (#data bits) = 9 to 492 clocks
 0.50µs to 16.40µs for 12-bit data @fADC=30MHz
 fs ≤ 2 Msamples/sec @fADC=30MHz, ts = 3 ADC cycles

 Enable HSI clock in RCC->CR, which runs ADC conversions
 RCC->CR |= RCC_CR_HSION; //HSION = bit 0 of RCC->CR

 Digital interface clock (register read/write)
 Enable APB2 clock in RCC_APB2ENR (clock enable register)



Conversion modes
 Single conversion (default: SCAN=0 in CR1, CONT=0 in CR2)

 Select an input channel (SQ1 field in in ADC1->SQR5)
 Start the conversion (software start or hardware trigger)
 EOC sets when conversion is complete
 Read the result in the DR

 Scan mode (enable with SCAN=1 in CR1)
 Perform a sequence of conversions of designated input channels

 Define sequence length in ADC1->SQR1
 Select channels in ADC1->SQR1…ADC1->SQR5  (channels can be in any order)

 Start the conversion sequence (software start or hardware trigger)
 EOC sets after each conversion (EOCS = 0) or after the entire sequence is 

complete (EOCS = 1).   EOCS is in ADC1->CR2
 Continuous mode (enable with CONT=1 in CR2)

 Start 1st conversion/sequence (software start or hardware trigger)
 Next conversion/sequence starts automatically after a conversion/sequence 

completes



Scan mode
 Convert multiple channels in a “sequence”

 Enable via SCAN bit in ADC_CR1
 Repeat if CONT bit set in ADC_CR2
 EOC bit set in ADC_SR at end of sequence or after each 

conversion (select via EOCS bit)
 Regular channel data to ADC_DR
 Injected channel data to ADC_JDR1 – ADC_JDR4

 Configure sequence via sequence registers
 ADC_SQR1 – seq. length and channel #s for conversions 13-16
 ADC_SQR2 – channel #s for conversions 7-12
 ADC_SQR3 – channel #s for conversions 1-6
 ADC_JSQR – seq. length and channel #s for up to 4 injected channels

 If JAUTO=1 (in ADC_CR1), 
 Injected group is converted after regular group after regular trigger
 Injected group interrupts regular group after injection trigger



Discontinuous mode

 Convert a subset of a sequence on each external trigger
 Regular group, on external trigger:

 convert n (≤ 8) channels from a sequence
 convert the next n channels on the next trigger
 repeat until all channels in the sequence are done
 restart the sequence on the next trigger

 Injected group: 
 Similar, but only 1 channel per external trigger



STM32 ADC control register 1(ADC_CR1)

RES: resolution (00=12 bit, 01=10-bit, 10=8-bit, 11=6-bit)
SCAN: enable scan mode (channel #s in ADC_SQRx, ADC_JSQRx)
JAUTO: enable automatic injected group conversion after regular group
Interrupt enables:

EOCIE/JEOCIE: on end of conversion (regular/injected channel)
OVRIE:    on overrun

Discontinuous mode:
DISCEN/JDISCEN: enable on regular/injected channels
DISCNUM: # channels to convert after trigger (1-8)

Analog Watchdog:
AWDEN/JAWDEN: enable on regular/injected channels
AWDCH:   analog watchdog channel selection
AWDSGL: enable watchdog on single channel in scan mode 
AWDIE:     enable interrupt on analog watchdog



STM32 ADC control register 2(ADC_CR2)

ADON: 1=enable ADC, 0=disable ADC and power down
CONT: 1 = continuous conversions, 0 = single conversion
ALIGN: data alignment in 16-bit data register (0=right, 1=left)
EOCS: end of conversion selection

0=set EOC at end of sequence, 1=set EOC at end of each conversion
DMA: DMA enable
DDS: DMA disable selection 

0=no new DMS request after last channel, 
1=continue DMA requests as long as DMA=1

SWSTART/JSWSTART: start conversion of regular/injected channels
EXTEN/JEXTEN: external trigger event

00=disable, 01=rising edge, 10=falling edge, 11=both edges
EXTSEL/JEXTSEL[3:0]: select external event for trigger (regular/injected)

different sets of 16 sources for regular and injected mode



ADC status register ADC_SR

OVR: overrun flag (set if data has been lost)
STRT/JSTRT: regular/injected channel conversion started flag 
EOC/JEOC: end of conversion flag (regular/injected channel)

End of sequence (if EOCS=1) or one conversion (EOCS=0)
AWD: analog watchdog flag

“event: if voltage crosses values in ADC_LTR and ADC_HTR

All flags set by HW and cleared by SW



ADC converter characteristics
Type Need

SHA
?

Cycles/
conversion

Advant-
ages

Disadvant-
ages

Example

Flash No 1 Fastest Expensive, 
power

6-bit @ 
400MHz

Successive 
Approx-
imation

Yes >= 2 Fast, 
cheap

Slower 
than flash

8-bit @ 
20 MHz

Integrating Yes Varies Precise Slow 22-bit @ 
20Hz

Sigma-
Delta

No Many Mostly 
digital, 
linear, 
high 
resolution

Complex 
digital 
circuit

16-bit @ 
100 KHz



ADC converter comparison



ADC selection (Analog Devices, Inc.)

 http://www.analog.com/en/analog-to-digital-
converters/products/index.html

http://www.analog.com/en/analog-to-digital-converters/products/index.html
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