

#### **Rexnord Automatic Deburring Machine**

**Final Design** 

Corp 9 Project Group

Paul Cofield Frank Orona Steven Rich Spencer Reynolds

Dr. Beale – Comprehensive Design One – MECH 4240 – Spring 2010

#### MISSION OBJECTIVE

Our mission is to:

- Create an automated deburring and transport system while:
  - Reducing production time
  - Improving overall quality of the finished product
  - Improving the efficiency of the waste removal process

### System Requirements

- Deburr all sizes and shapes of the specified parts.
- Leave the necessary finish on the part surface.
- Fully automated from beginning requiring no aid from an operator.
- Automatic collection and removal of dust.
- No sparks must be generated during deburring process.
- Must deburr the bottom and sides of each part.
- Must be free to quickly move to other cells.
- Deburring system must meet all OSHA safety and environmental standards for operations.

## Subsystem Level Requirements

- Entrance conveyor must be adjustable
- Magnetic conveyor must be stable.
- Magnetic conveyor must release part onto exit ramp
- Exit ramp must be able to support two parts of any size
- Radial deburring brushes must remove burs without damaging part
- No sparks
- Active dust collection system to remove all dust and store in a hopper for later removal.

### Machine Architecture





### Technical Resource Budget Tracking

#### Volume –

- 2 feet wide, 4 feet long, 5 feet tall
- 40 cubic feet

#### Weight –

 The cart being used to hold the entire system has a capacity of 500 lbs.

| Item      | Weight |  |  |  |  |  |
|-----------|--------|--|--|--|--|--|
|           | (lbs)  |  |  |  |  |  |
| Cart      | 40     |  |  |  |  |  |
| Motor     | 52     |  |  |  |  |  |
| Hopper    | 10     |  |  |  |  |  |
| Brushes   | 9      |  |  |  |  |  |
| Exit Ramp | 20     |  |  |  |  |  |
| T-tubing  | 146    |  |  |  |  |  |
|           |        |  |  |  |  |  |
| Total     | 277    |  |  |  |  |  |

#### Power –

- 120VAC 60 Hz source will power all motors, conveyors, sensors, and the relay.
- The brush motors are ¼ horsepower and operate at 1725 rpm.

### Product Hierarchy



# Structure and Safety Shield















# Magnetic Conveyor









# Deburring Brush





# Deburring Brushes (sides)



# Dust Collector and Exit Ramp







# Wiring Diagram and Controller

- Insert locgic controller
- Wiring diagram

# Bill of Materials

| Quantity | Part              | Part #/Company                          | Price (\$) |  |  |
|----------|-------------------|-----------------------------------------|------------|--|--|
| 2        | Light Sensor      | 65845K56 / McMaster 65845K57 / McMaster | 284.22     |  |  |
| 1        | Timed Relay       | 2809T41/ McMaster                       | 60.83      |  |  |
| 1        | E-Stop            | Idec HW1X / Wolf Automation             | 32.50      |  |  |
| 1        | Bearing and Mount | 6244K56 / McMaster                      | 38.65      |  |  |
| 1 or 3   | Brush Motor       | 3K771 / Grainger                        | 74.00 ea   |  |  |
| 1        | Motor Control     | FA206 / Keenzo                          | 28.97      |  |  |
| 1        | Door Switch       | 65665K13 / McMaster                     | 80.03      |  |  |
| 1        | Magnetic Conveyor | Custom / Bunting Magnetics              | 4,011.00   |  |  |
| 1        | Duct System       | Custom / American HVAC Parts            | 50.00      |  |  |
| 1        | Exit Ramp         | Custom / Metals Depot                   | 38.24      |  |  |
| 1        | Cart              | WES101 / Hand Trucks                    | 103.98     |  |  |
| 1 or 3   | Deburring Brush   | Custom / Industrial Brush               | 362.25 ea  |  |  |
|          | Structural Parts  | 80/20 Parts                             | 1873.74    |  |  |
|          |                   | <b>Total Cost</b>                       | 6,487.09   |  |  |

# Burden Rate

- burden rate =\$35 /hr (\$0.58/min)
- 33.3 min x \$0.58/min =\$19.425 /day.
- \$389 dollars will be saved per month.
- Cost \$6514.97 / \$389
  =16.77 months machine payback.

# Medical Implications

- More Ergonomic
- Less work for operator
- No sparks, or handling part at all
- Less steps traveled by operator
- Less Stress for operator=more productive

#### Increase in Productivity

- 2500 parts per month (125 parts per day)
- deburr one part is 16 seconds (33.3 min/day)
- 33.3 min/ 4 min cycle time= 8.3 parts
- 47 dollars per part x 8.3= \$376 dollars per day
- 20 work days/month = \$7520 revenue/month
- 20-30% profit margin=

\$1504 to \$2256 /month profit

The Deburrer pays for itself in 2-4 Months!!

### **Brush Analysis**



# Risk Assessment

| Rank | Risk Title                     | Risk Exp                            | Action         | Risk Type             | Status                                                                                                         |  |
|------|--------------------------------|-------------------------------------|----------------|-----------------------|----------------------------------------------------------------------------------------------------------------|--|
| 1    | Part not deburred sufficiently | Likelihood: Low<br>Consequence: Hi  | Research/Watch | Technical/<br>Program | Speed adjustment on conveyor and brush motors                                                                  |  |
| 2    | Cost Effectiveness             | Likelihood: Low<br>Consequence: Mod | Research       | Organization          | The machine has been<br>analyzed and determined<br>to have a satisfactory pay-<br>back period                  |  |
| 3    | Brush wear                     | Likelihood: Low<br>Consequence: Low | Watch          | Organization          | Brushes will need checking<br>and replacement on<br>scheduled intervals                                        |  |
| 4    | Dust collector blocked         | Likelihood: Mod<br>Consequence: Low | Watch          | Organization          | Hopper will need to be<br>emptied on a timely basis<br>for proper maintenance                                  |  |
| 5    | Timing Issue                   | Likelihood: Low<br>Consequence: Low | Research/Watch | Technical/<br>Program | The machine has been<br>timed effectively to<br>maintain pace with the<br>operator and supporting<br>machines. |  |

# Estimated Timeline

| Rexnord Corp_9        |          |          |                                       |          |          |          |          |            |          |          |          |          |          |          |          |                                       |            |            |
|-----------------------|----------|----------|---------------------------------------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|---------------------------------------|------------|------------|
|                       |          |          |                                       |          |          |          |          |            |          |          |          |          |          |          |          |                                       |            |            |
| Milestone Tasks       | April    |          |                                       |          | May      |          |          |            |          | June     |          |          |          | July     |          |                                       |            | Aug        |
|                       | 04/05/10 | 04/12/10 | 04/19/10                              | 04/26/10 | 05/03/10 | 05/10/10 | 05/17/10 | / 05/24/10 | 05/31/10 | 06/07/10 | 06/14/10 | 06/21/10 | 06/28/10 | 07/05/10 | 07/12/10 | 07/19/10                              | / 07/26/10 | / 08/02/10 |
| Evaluate Concepts     |          |          |                                       |          |          |          |          |            |          |          |          |          |          |          |          |                                       |            |            |
| Select Best Concept   |          |          |                                       |          |          |          |          |            |          |          |          |          |          |          |          |                                       |            |            |
| Drawings              | !        |          |                                       |          |          |          |          |            |          |          |          |          |          |          |          |                                       |            |            |
| Product Documentation |          |          |                                       |          |          |          |          |            |          |          |          |          |          |          |          |                                       |            |            |
| Parts selected        |          |          | /                                     |          |          |          |          |            |          |          |          |          |          |          |          |                                       |            |            |
| Parts Ordered         |          |          |                                       |          |          |          |          |            |          |          |          |          |          |          |          |                                       |            |            |
| Parts Received        |          |          |                                       |          |          |          |          |            |          |          | 1        |          |          |          |          |                                       |            |            |
| Construction          |          |          |                                       |          |          |          |          |            |          |          |          |          |          |          |          |                                       |            | 4          |
| Validate and Verify   |          |          |                                       |          |          |          |          |            |          |          |          |          |          |          |          |                                       |            |            |
| Demonstration         |          |          |                                       |          |          |          |          |            |          |          |          |          |          |          |          |                                       | <u> </u>   |            |
|                       |          |          |                                       |          |          |          |          |            |          |          |          |          |          |          |          |                                       |            |            |
|                       |          |          |                                       |          |          |          |          |            |          |          |          |          |          |          |          |                                       |            |            |
| Steve Rich            |          |          | ′                                     |          |          |          |          |            |          |          |          |          |          |          |          |                                       |            |            |
| Paul Cofield          |          |          | /                                     |          |          |          |          |            |          |          |          |          |          |          |          |                                       |            |            |
| Spencer Reynolds      |          |          |                                       |          |          |          |          |            |          |          |          |          |          |          |          | · · · · · · · · · · · · · · · · · · · |            |            |
| Frank Orona           |          |          | · · · · · · · · · · · · · · · · · · · |          |          |          |          |            |          |          |          |          |          |          |          |                                       |            |            |

### CONCLUSION

- "Keep It Simple"
- The refined system meets all standards and requirements:
  - Lighter
  - Cheaper
  - Smaller
  - Continuously running
  - Simple maintenance
  - No sparks
  - Minimize dust

# Questions?

