

Rexnord Automatic Deburring Machine

Mid-Term Report

Corp 9 Project Group
Paul Cofield
Frank Orona
Steven Rich
Spencer Reynolds
Dr. Beale — Comprehensive Design One — MECH 4240 — Spring 2010

MISSION OBJECTIVE

Our mission is to:

- Create an automated deburring and transport system while:
 - Reducing production time
 - Improving overall quality of the finished product
 - Improving the efficiency of the waste removal process

THE BREAKDOWN

- Part must be deburred to a desired finish
- System must be fully automatic from beginning to end, including loading and unloading
- Must have active vacuum system for metal dust removal
- Must store part at end of operation for pickup
- Must adapt to different part sizes with minor adjustments

ARCHITECTURAL DESIGN AND DEVELOPMENT

Center-Holding

Large Sanding Disk

Magnetic Conveyor

Large Sanding Disc Design

<u>Advantages</u>

- One disc
- Stationary part
- Cheapest
- one motor
- less space

<u>Disadvantages</u>

- One surface
- Sanders wear out
- Securing part
- Auto load complex
- Have to flip part

Center Holding with Rotation Design

<u>Advantages</u>

- Top and sides
- more thorough
- more polished finish

<u>Disadvantages</u>

- Difficult to auto-load
- More expensive
- Difficult to rotate
- Have to lift the part
- More moving parts
- Sanders wear out

Magnetic Conveyor Design

(chosen design)

<u>Advantages</u>

- less moving parts/sensors
- Easy part loading
- Optimum polish
- Auto Unload
- Use Existing conveyor
- on/off switch

<u>Disadvantages</u>

- Burs not removed
- Burs build-ups on conveyor
- More expensive

Physical Description

Volume

- Less than 4 feet tall
- 1.5 feet wide
- 9 feet long
- Over all volume 54 cubic feet

Weight

~200 lbs

Power

- Electrical motors
- 120 Volt source, 60 Hertz cycle.

Brushes

- Radial Axial brushes
- Carbon steel
- Tubular shape

Product Hierarchy

Bill of Materials (est.)

Design Type	Component	Quantity (While design in use)	Estimated Cost (Dollars)	
Large Sanding Disc	Rotary Motor	1	750	
	Sanding Disc	1	50	
	Anti-slip Supports	2	5	
	Pneumatic Ram	1	50	
	Storage Ramp	1	20	
	Vacuum System	1	66	
	9.50cm/20.318cm/52c-2.56903	Total	941	
Center Held with Rotation	Component	Quantity (While design in use)	Estimated Cost (Dollars)	
	Centering Tool	2	30	
	Rotary Motor	3	2,250	
	Sanding Discs	2	50	
	Storage Ramp	1	20	
	Vacuum System	1	66	
		Total	2416	
lectromagnetic Conveyo	Component	Quantity (While desing in use)	Estimated Cost (Dollars)	
	Conveyor Belt	2	2000	
	Deburring Brushes	3	120	
	electric motor	3	360	
	Vacuum System	1	66	
	Storage Ramp	1	20	
		Total	2566	

Risk Assessment

Rank	Risk Title	Risk Exp	Action	Risk Type	Status
1	Part leaves magnetic conveyor during deburring	Likelihood: Low Consequence: Hi	Research	Safety/ Technical	Magnetic conveyor strength is sufficient for all conditions
2	Part not centered on conveyor	Likelihood: Low Consequence: Mod	Research	Technical	Centering rails will correct path.
3	Part not deburred sufficiently	Likelihood: Low Consequence: Mod	Research/ Watch	Technical/ program	Speed adjustment on conveyor and brush motors
4	Brush wear	Likelihood: Low Consequence: Low	Watch	Organization	Brushes will need checking and replacement on scheduled intervals
5	Dust collector blocked	Likelihood: Mod Consequence: Low	Watch	Organization	Hopper will need to be emptied on a timely basis for proper maintenance

Estimated Timeline

Questions?

