LUNAR REGOLITH EXCAVATOR

NASA : Corporation 2 Summer 2009 Instructor : Dr. Beale Sponsor: Rob Mueller, NASA Lunar Surface Systems Lead Engineer Evaluator : Dr. Madsen, Dr. Jackson, Dr. Marghitu

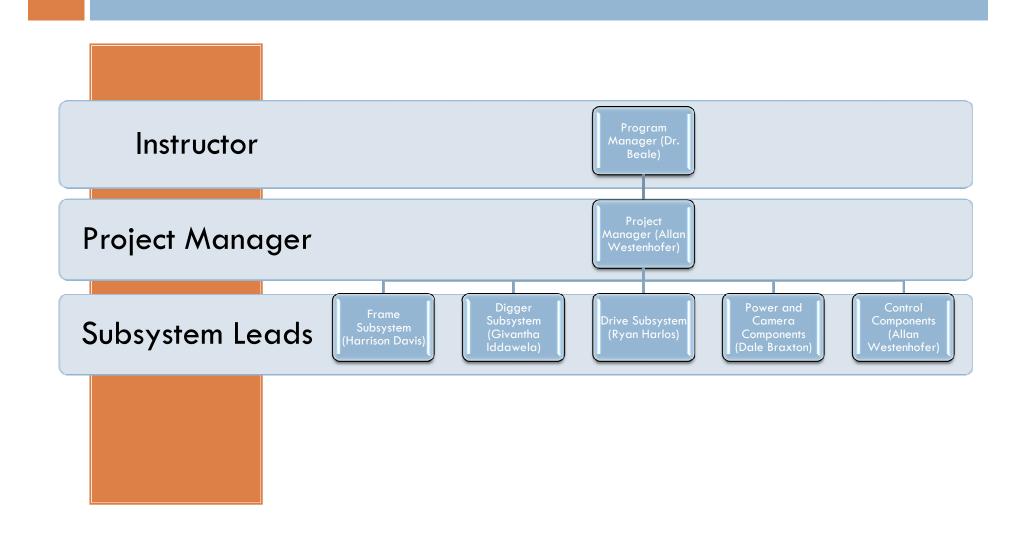
Project Manager: Allan Westenhofer Presenting: Harrison Davis, Dale Braxton

August 4, 2009

Outline

- 1. Introduction to Design Objective
- 2. Subsystems Concepts and Analysis
- 3. Resource Budgeting
- 4. Project Management
- 5. Conclusion and Future Goals

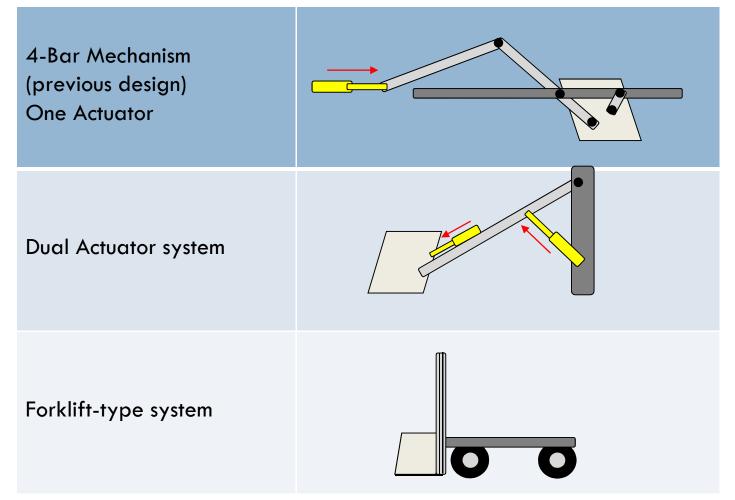
1.1 Mission Objective


The mission objective is to create an un-manned lunar device that, while being self-propelled, excavates lunar regolith. The vehicle must be able to be driven and operated remotely. It must efficiently excavate 150 kg of regolith per 30 min in semi-lunar conditions.

1.2 Purpose of Design

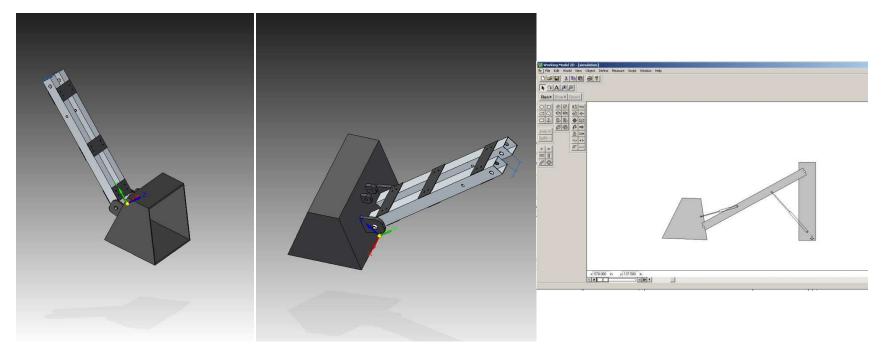
The design is to meet requirements for lunar conditions. The regolith excavated will be used by NASA in a process to extract oxygen and create water for a lunar colony. Certain requirements are set for power, size, and mass to ensure a feasible design. These requirements have been set by Rob Mueller, NASA Lunar Surface Systems Lead Engineer and the committee of the CSEWI competition.

2.1 System Hierarchy

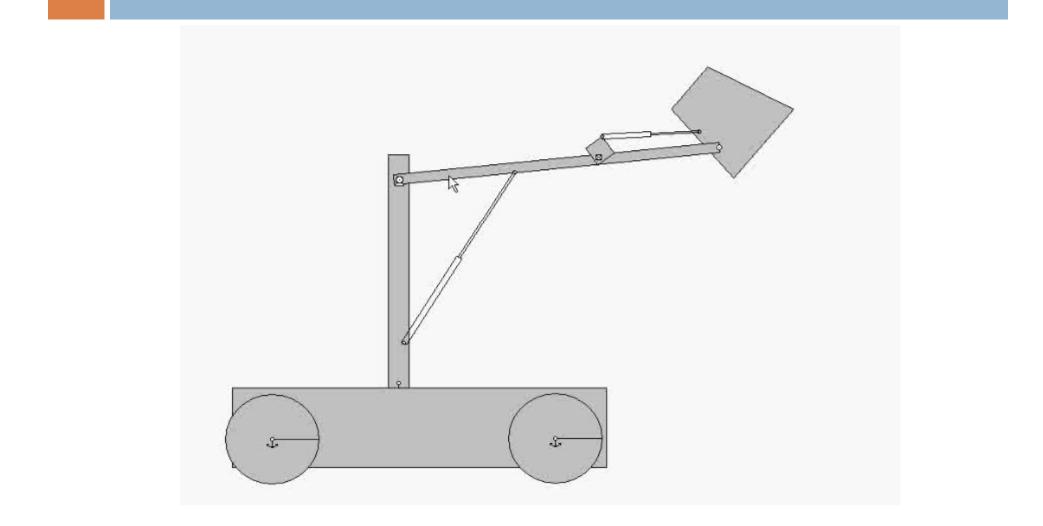


2.2.1 Digger Subsystem

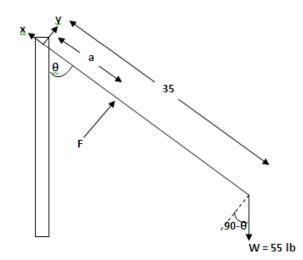
- Design Objectives
 - Ability to raise the bucket above an elevation of 0.5 meters
 - The system length should be no longer than 1m
 - High bucket capacity
 - Light weight design
 - Minimal power usage
 - Simplicity


2.2.2 Digger Subsystem

Design Concepts


2.2.3 Digger Subsystem

□ The Design


Material: Carbon Fiber and Garolite

2.2.4 Digger System Animation

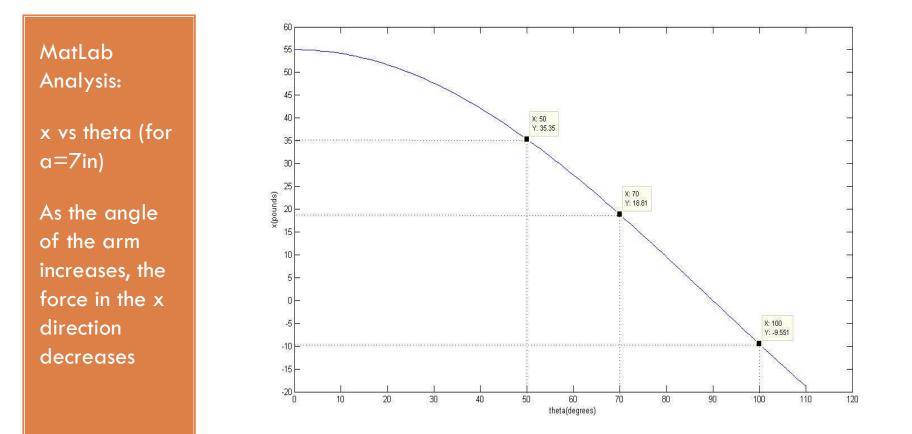
2.2.5 Digger/Joint Force Analysis

Digger Free Body Diagram

W= Weight of loaded bucket ≈ 55lb

F= Actuator Force

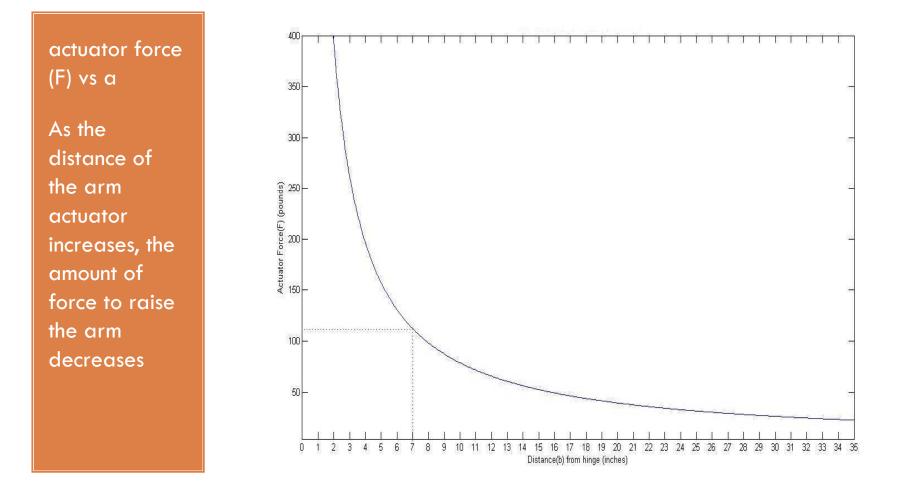
Θ= Arm angle


Starting position: θ =50 degrees

Carrying position: θ =70 degrees

Dumping position: θ =100 degrees

The forces which were the main focus of this analysis are the actuator force and the forces at the main hinge.


2.2.6 Joint Force Analysis (cont.)

2.2.7 Joint Force Analysis (cont.)

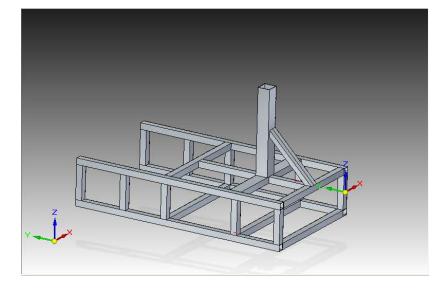
MatLab 250 X: 90.04 Analysis: Y: 220 225 X: 100.2 200 y vs theta (for X: 70.03 Y: 216.5 X: 50.04 Y: 206.8 Y: 168.6 a=7in) 175 150 (spunod) k As the angle of the arm 100 increases, the force in the y 75 direction 50 increases 25 0 10 20 30 40 50 60 70 80 90 100 110 120 0 thata(damaac)

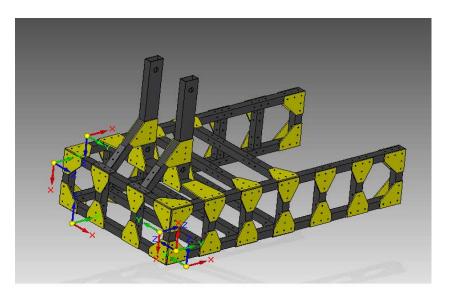
2.2.8 Joint Force Analysis (cont.)

2.2.9 Arm Actuator

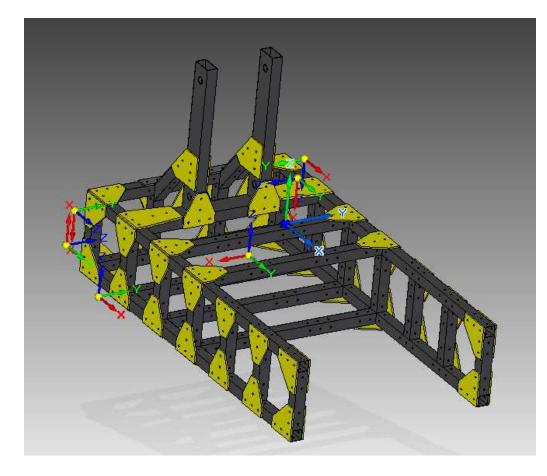
- Northern Industrial Linear Actuator
- Input voltage 12 Volt
- Stroke 11 13/16 in
- 8mm per second travel speed
- Center-to-center closed pin distance is 17 5/16in. (440mm)
- 1350-lb. maximum load capacity

2.2.10 Bucket Actuator

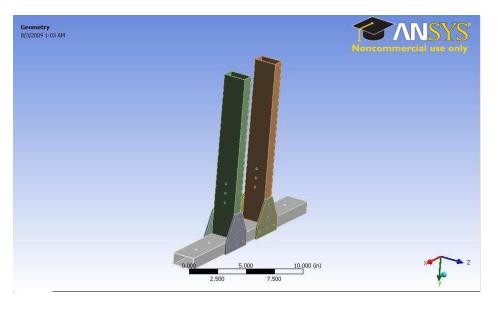

- Northern Industrial
 Linear Actuator
- Input voltage 12 Volt
- Stroke 3 15/16 in 8mm per second travel speed
- Center-to-center closed pin distance is 9 7/16in. (240mm)
- 1350-lb. maximum load capacity
- Measures 10 5/8in.L x 9in.H



2.3.1 Frame Subsystem


Original Concept

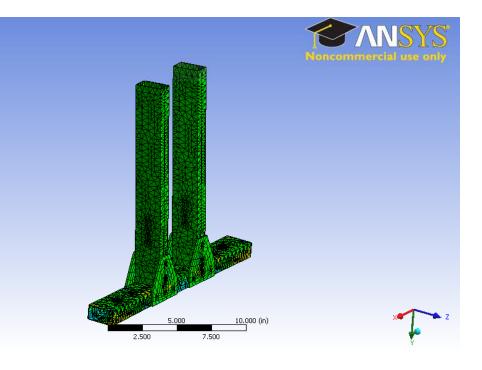
Final Design


2.3.2 Frame Components

- Carbon Fiber Tubing
- Garolite Gussets
- Aluminum Blind Rivets
- Steel Screws
- □ Adhesive Epoxy

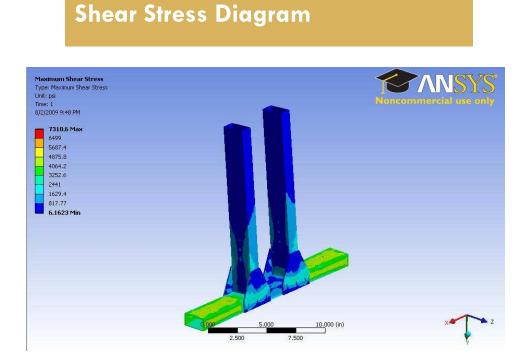
2.3.3 Frame Analysis with ANSYS

First Design for Digger Supports

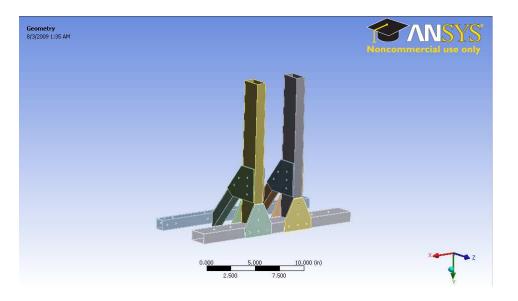


- Used to calculate maximum stress in model
- Ends of base beam are fixed
- Simulated with 100 lb force perpendicular to each support

2.3.3 Frame Analysis with ANSYS (cont.)

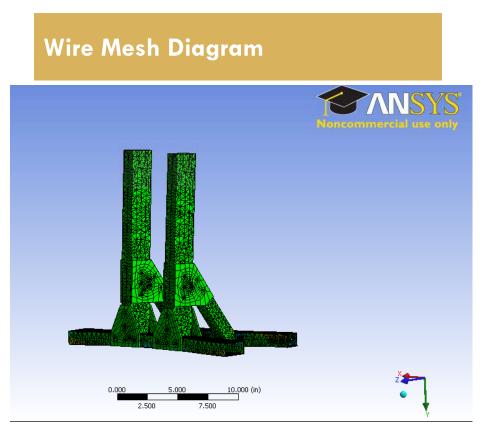

- Wire Meshing created to calculate results from acting loads on model
- Mesh: Patch
 Conforming
 Tetrahedrons and
 Sweeping
- Material properties of carbon fiber used in calculations

Wire Mesh Diagram

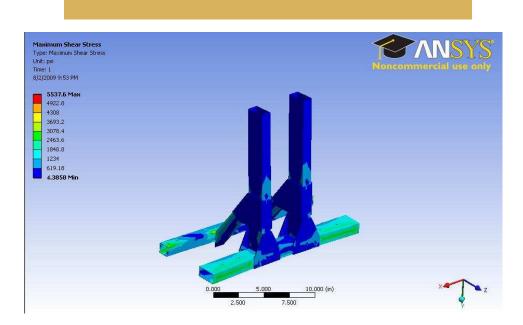

2.3.4 Frame Analysis with ANSYS (cont.)

- Blue regions indicate
 low stress levels
- Green and yellow
 regions indicate higher
 stress levels
- Most stress
 concentrated in base
 beam
- Max stress is 7310 psi

2.3.5 Frame Analysis with ANSYS (cont.)


Second Design on Digger Supports

- Add angled support arms to reduce stress and efficiently distribute loads
- Want loads to be distributed to rear of frame to balance digging and transporting loads

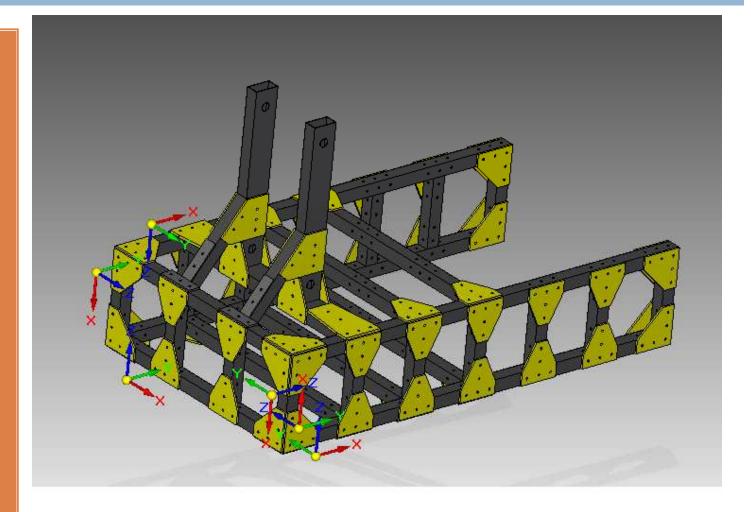

2.3.6 Frame Analysis with ANSYS (cont.)

- Second Design
 simulated with 100 lb
 force on each support
 member
- Ends of base beam and support beam are fixed

2.3.7 Frame Analysis with ANSYS (cont.)

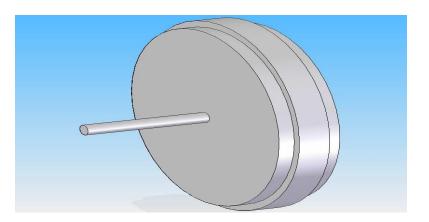
- Max stress level reduced to 5537 psi
- Stress in base beam reduced
- Load distributed to back support beam and to rear of frame
- □ Factor of Safety: 115.5

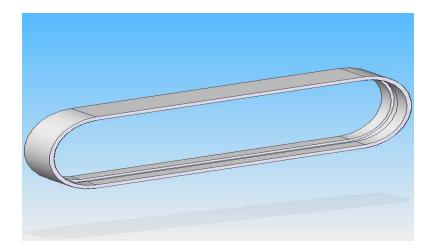
Shear Stress Diagram

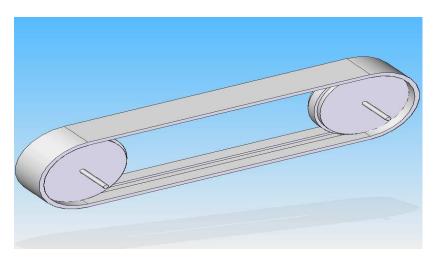

2.3.8 ANSYS Animation

Maximum Shear Stress	ANSYS Numerial use only
Type: Maximum Shear Stress	
Unit: psi	Noncommercial use only
Time: 0	and the second second second
8/3/2009 12:09 PM	
👝 5537.6 Max	
4922.8	
4308	
3078.4	
2463.6	
1848.8	
1234	
619.18	
4.3858 Min	
	z
	* *
	Ŷ

2.3.9 Final Frame Design


Cross members are spaced approximately 5 inches apart to maximize frame strength


Rear cross bars and top cross bars will be placed with bolts to allow for easy removal



2.4.1 Drive Subsystem Design

2.4.2 Drive Subsystem Motor

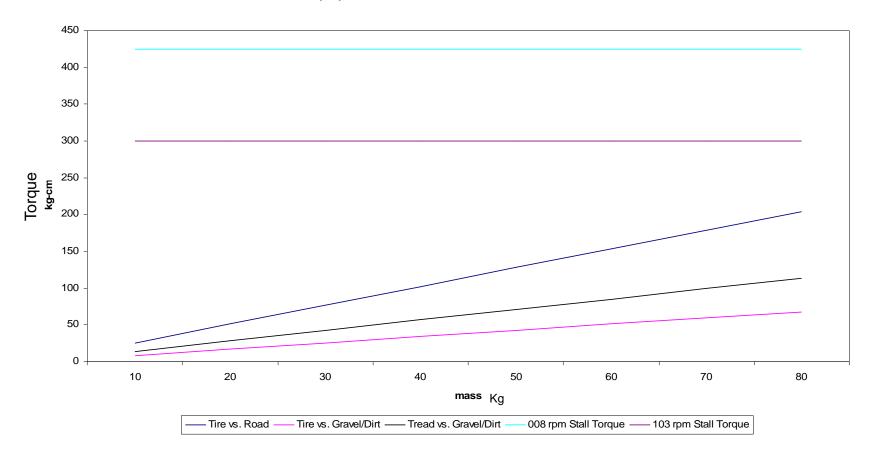
Proven Motor

Gearbox To Increase Torque

GEARED MOTOR TORQUE/SPEED

014			NV CI																	
\setminus	滅速比 Reduction ratio	$\frac{1}{3}$	<u>1</u> 4	<u>1</u> 12	<u>1</u> 15	1 19	$\frac{1}{43}$	1 53	1 66	1 81	1 100	<u>1</u> 113	1 150	$\frac{1}{230}$	1 285	1 353	1 488	<u>1</u> 546	<u>1</u> 676	
12V	定格扭力(kg-cm) Rated torque	1.3	1.65	4.1	5.0	6.3	12	15	19	23	28	32	36	55	68	84	100	100	100	
12 V	定格回轉數(rpm) Rated speed	1600	1290	457	369	305	130.5	122.5	98.5	68.5	55.5	49.5	37	24	19.5	15.5	11.5	10.3	8.3	
24V	定格扭力(kg-cm) Rated torque	1.8	2.2	5.5	6.8	8.5	16	20	25	31	39	44	48	74	92	100	100	100	100	
241	定格回轉數(rpm) Rated speed	1555	1255	444	359	290	127	102.5	82.5	66.5	54	48	36	23.5	19	15.5	11.6	10.4	8.4	
馬道	幸單體型式																			

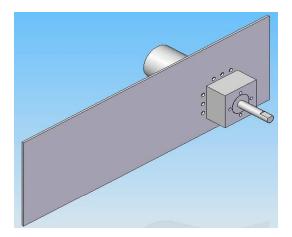
网建半短空八 MOTOR INSTALLATION

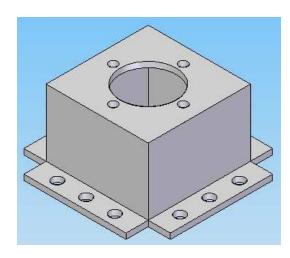

定格電壓(V) Rated volt	定格扭力(g-cm) Rated torque	定格回轉數(rpm) Rated speed	定格電流(mA) Rated current	無負荷回轉數(rpm) No load speed	無負荷電流(mA) No load current	定格出力(W) Rated output
12	480	5600	≦5600	6000	≦1750	58.6
24	650	5450	≦2750	6000	≦ 750	48.3

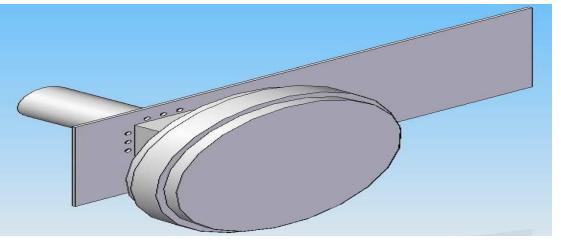
2.4.3 Torque Calculations

The purpose of the calculations is to verify if the motors provided enough torque to move from a stand still

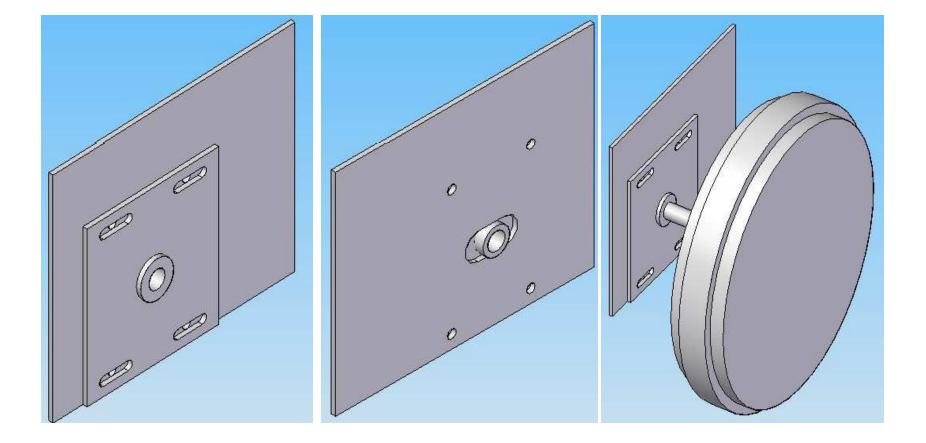
2.4.4 Drive Wheel Calculations

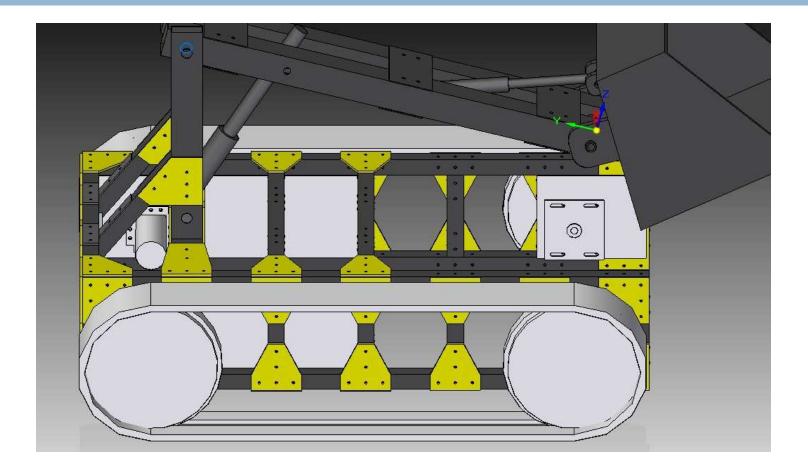

(1/4)*m Individual Drive Wheel Calculations




2.4.5 Speed Calculations

Speed Calculations $V \longrightarrow Velocity$ $\phi \longrightarrow Diameter of wheel$ $<math>T \longrightarrow time to traverse area (length of 400 cm)$ Ø = 22.708 cm V = rpm + 60 $T = \frac{400}{V}$. For 8 rpm motor V = 8 * (22.708) (17) = 9.512 cm/s T = 400 = 42 seconds · For 103 rpm motor $V = 103 * \frac{(22.708)(17)}{60} = 122.466 \text{ cm/s}$ $T = \frac{400}{V} = 3.26$ seconds


2.4.6 Drive Subsystem Design

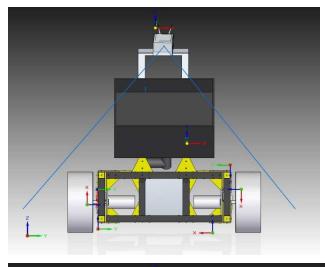


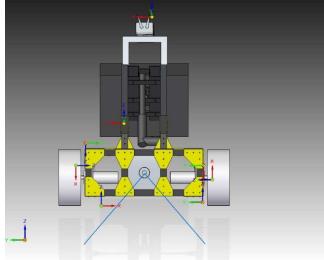
2.4.7 Drive Subsystem Design

2.4.8 Drive Subsystem Design

2.5 Power System

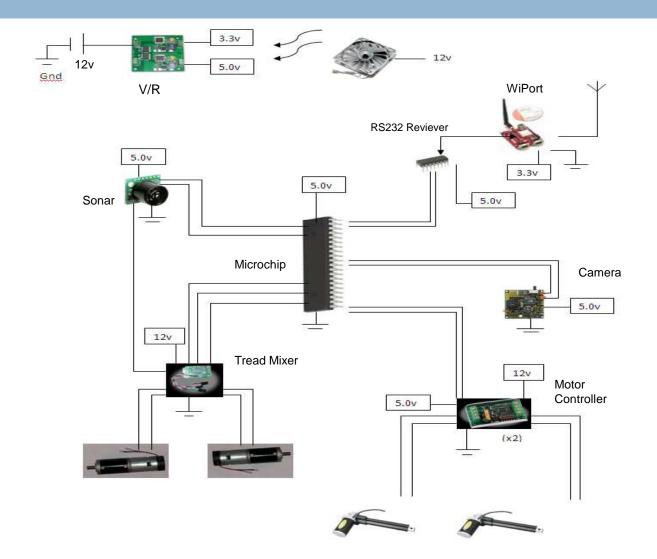
□ Limits: 40V, 15A




12v Lead Acid Battery

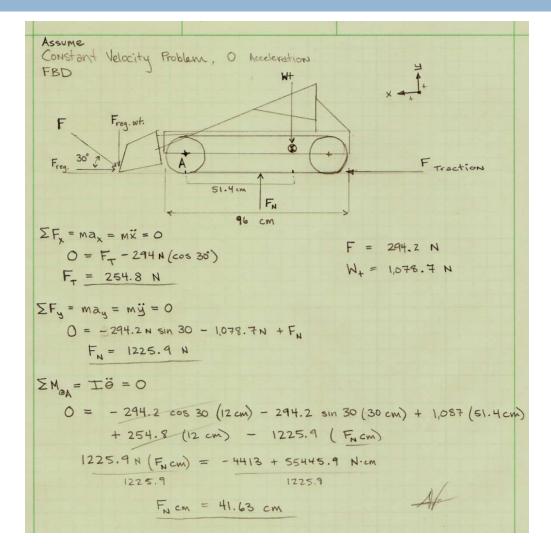
Power Distribution			
Component	Voltage Required (V)	Current Consumed (mA)	Power Consumption (W)
Motors (2)	24	2750(2)	132
Cisco WVC2300			
Wireless-G Business	12	1000	12
Internet Video Camera			
Actuators(2)	12	1750(2)	42
120mm Auxiliary Fan	12	.250	3
PIC Controller	5	100	0.5
Wireless bridge	5	1600	8
WiPort	3.3	400	1.3
Total Hardware (Idle,			
Connected to ground	12	750	9
station)			
Sonar Sensor	5V	2	0.01
Camera Board	5V	100	0.5
Siren Speed Controller	12V	100	1.2
Tank Mixer	?	?	?
Total Hardware (Max Load)	24	13052.25	312.254

2.6 Camera System

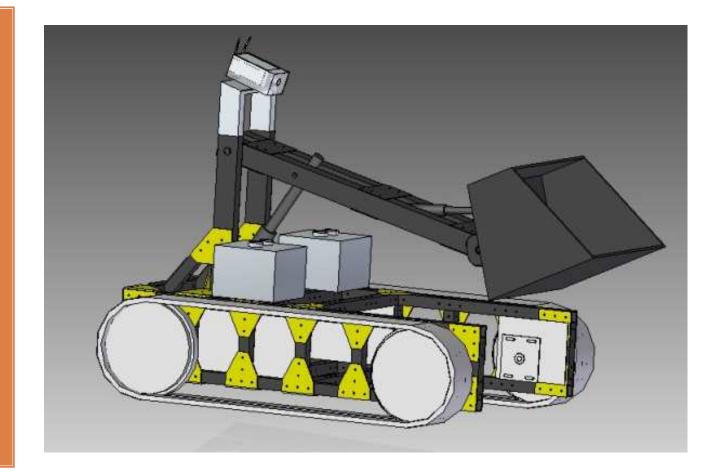


2.7 Control System

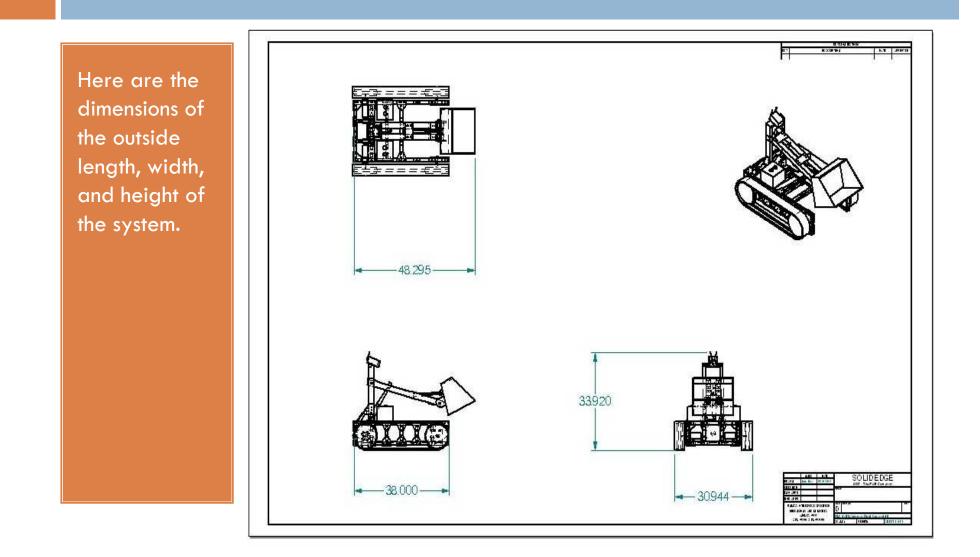
The processor in the microcontroller will send signals to the controllers to operate movement and operation of the digger arm. The WiPort will send and receive communication data with the ground station


2.8 Control Ground Station

The ground station is where the operator can control the excavator with a handheld console control. The network adapter will receive the transmission from the WiPort located on board the excavator, and send input back to it.


2.9 System Calculations

This a Free **Body Diagram** done, with assumed parameters, to estimate forces on the excavator. We are using this approach to find the location where the bucket could dig and still provide the most traction force.



2.10 System CAD Drawing

Here is a 3D CAD drawing of the concept of the excavator.

2.11 System Dimensions

3.1 Resource Budgeting

	BILL OF MATERIALS						
<u>Bill of</u>	Item	Part #	Qty	Description	Cost/per	Cost	Mfg. Source
<u>Materials</u> –	1	WVC2300		Cisco Wireless-G 1 Video Camera	\$359.99	\$359.99	Cisco.com
	2	125012		12 V, 11 13/16 stroke 1 linear Actuator	\$159.99	\$159.99	Northerntool.com
This chart	3	LA-12v26ah		2 12v Lead acid battery	\$59.95	\$119.90	batteryspace.com
keeps track of	4	125011		12 V, 7 7/8 stroke 1 linear actuator	\$149.99	\$149.99	Northerntool.com
prices and	5	N/A		2 Sleeve Bearings	\$0.80	\$1.60	McMaster-carr
locations of	6	TD05200		4 in. Wide Tread set 1 (2)	\$580.63	\$580.63	SuperDroidRobots.co m
purchased	7	TD036290		IG52-02 24VDC 290 RPM Gear Motor w/ 2 encoder	\$127.80	\$255.60	SuperDroidRobots.co m
parts.	8	N/A		1 inch square carbon 4 fiber tubing 96"	\$325.00	\$1,300.00	dragonplate.com
	9	N/A		2 inch square carbon 3 fiber tubing 24"	\$150.00	\$450.00	drgaonplate.com
	10	N/A		1 inch by 2 inch C.F. 1 rectangular tube 48"	\$180.00	\$180.00	dragonplate.com
	11	9910T22		24"X24"Plate(1/8")G- 1 10 Garolite	\$55.86	\$55.86	McMaster-carr
	12	9910T21		12"X12"Plate(1/8")G- 1 10 Garolite	\$16.90	\$16.90	McMaster-carr
	13	97526A404		Blind Aluminum 3 Rivets (100pk)	\$7.14	\$21.42	McMaster-carr
	14	#2216		"Scotch-Weld" Epoxy 1 Adhesive 26.7 fl. oz	\$119.00	\$119.00	drgaonplate.com

3.2 Resource Budgeting(Continued)

	BILL OF MATERIA	ALS .					
<u>Bill of</u>	15	6659A21		Blind Rivet 1 Installation Tool	\$25.18	\$25.18	McMaster-carr
<u>Materials</u> –	16	N/A		1 1/4" x 3/4" fasteners	\$1.00	\$1.00	N/A
This chart	17	N/A		1 1/2"x18" Shaft	\$25.08	\$25.08	McMaster-carr
keeps track of	18	N/A		Aluminum Sheet Dual 5y +3.3y		\$0.00	N/A
prices and	19	DVREG	1	Switching Voltage Regulator	\$74.95	\$74.95	Roboticsconnection
locations of	20	SK 3720Q1	1	CMUCam2+ robot camera	\$169.96	\$169.96	Roboticsconnection
purchased	21	EZ3LV	1	Maxbotix Maxsonar- EZ3 Sensor	\$24.95	\$24.95	Roboticsconnection
parts.	22	130898	1	Aerocool Turbine 1000 silver 120mm Fan	\$14.99	\$14.99	xoxide.com
	23	RL-IMX1	1	IMX-1 Invertable RC tank mixer	\$39.95	\$39.95	Robotcombat.com
	24	0-SYREN10	2	SyRen 10A Regenerative Motor Driver	\$49.99	\$99.98	Robotcombat.com
	25	17M0994	2	PIC18LF4682-I/P 8-bit Microcontroller	\$8.35	\$16.70	Microchip.com
	26	N/A	1	Lantronix WiPort Eval kit	\$299.99	\$299.99	Lantronix.com
	27	MAX232ECN	2	TXInst. RS-232 Line Driver/Reciever	\$0.86	\$1.72	Mouser electronics
						\$0.00	
					Total Cost	\$4,565.3	3

3.3 Mass of Materials

It was necessary, as a design requirement to meet a weight requirement of 80 kilograms. We keep a budget of materials and made it to 20kg, neglecting some unselected parts.

BILL OF MA	TERIALS					
Item	Part #	Qty	Description	Mass/per	Mass	Mfg. Source
1	WVC2300	1	Cisco Wireless-G Video Camera	520	520	Cisco.com
2	125012	1	12 V, 11 13/16 stroke linear Actuator	3175	3175	Northerntool.com
3	LA-12v26ah	2	12v Lead acid battery	8800	17600	batteryspace.com
4	125011	1	12 V, 7 7/8 stroke linear actuator	3175	3175	Northerntool.com
5	N/A	2	Sleeve Bearings	250	500	McMaster-carr
6	TD05200		4 in. Wide Tread set (2)	6000	6000	SuperDroidRobots.com
7	TD036290	2	IG52-02 24VDC 290 RPM Gear Motor w/ encoder	1140	2280	SuperDroidRobots.com
8	N/A	Z	1 inch square carbon fiber tubing 96"	360	1440	dragonplate.com
9	N/A	3	2 inch square carbon fiber tubing 24"	236	708	drgaonplate.com
10	N/A	1	1 inch by 2 inch C.F. rectangular tube 48"	254	254	dragonplate.com
11	9910T22	1	24"X24"Plate(1/8")G-10 Garolite	2206	2206	McMaster-carr
12	9910T21		12"X12"Plate(1/8")G-10 Garolite	552	552	McMaster-carr
12	97526A404		Blind Aluminum Rivets (100pk)	0.25	0.75	McMaster-carr

3.4 Mass of Materials(Continued)

	BILL OF MATERIA	ALS					
lt was	15	6659A21		Blind Rivet 1 Installation Tool	0	0	McMaster-carr
necessary, as	16	N/A		1 1/4" x 3/4" fasteners	200	200	N/A
a design							
requirement to	17	N/A		1 1/2"x18" Shaft	750	750	McMaster-carr
meet a weight	18	N/A	1	Aluminum Sheet Dual 5v +3.3v	1000	1000	N/A
requirement	19	DVREG	1	Switching Voltage Regulator	20	20	Roboticsconnection
of 80	20	SK 3720Q1	1	CMUCam2+ robot camera	5	5	Roboticsconnection
kilograms.	21	EZ3LV	1	Maxbotix Maxsonar- EZ3 Sensor	4.3	4.3	Roboticsconnection
We keep a				Aerocool Turbine 1000 silver 120mm			
budget of	22	130898	1	Fan IMX-1 Invertable RC	135	135	xoxide.com
materials and	23	RL-IMX1	1	tank mixer SyRen 10A	25	25	Robotcombat.com
made it to	24	0-SYREN10	2	Regenerative Motor Driver	26	52	Robotcombat.com
	25	17M0994	2	PIC18LF4682-I/P 8-bit Microcontroller	5	10	Microchip.com
20kg,	26	N/A	1	Lantronix WiPort Eval kit	500	500	Lantronix.com
neglecting				TXInst. RS-232 Line			
some	27	MAX232ECN	2	Driver/Reciever	5	10	Mouser electronics
						0	
					Total Mass	41207.0	5

4.1 Work Breakdown Structure

Item	Task	Resource Names	June 7 - 13	June 14 - 20	June 21 - 27	June 28 - July 4	July 5 - 11	July 12 - 18	July 19 - 25	July 26 - Aug. 1
1	Brainstorming	All								
2	Concept Generation	All								
3	Concept Design	All								
4	Verification analysis	All								
5	Excavator Subsystem	Givantha								
5.1	Concept Selection									
5.2	Materials/parts Selection									
5.3	CAD Drawings/ Verification									
6	Navigation Subsystem	Ryan								
6.1	Concept Selection									
6.2	Materials/parts Selection									
6.3	CAD Drawings/ Verification									
7	Frame Subsystem	Harrison								
7.1	Concept Selection									
7.2	Materials/parts Selection									
7.3	CAD Drawings/ Verification									
8	Camera Subsystem	Dale								
8.1	Concept Selection									
8.2	Materials/parts Selection									
8.3	CAD Drawings/ Verification									
9	Power Subsystem	Dale								
9.1	Concept Selection									
9.2	Materials/parts Selection									
9.3	CAD Drawings/ Verification									
10	Control Subsystem	Allan								
10.1	Concept Selection									
10.2	Materials/parts Selection									
10.3	Schematics/ Verification									
11	Systems Engineering	Allan								
12	Project Engineering	Allan								

5.0 Conclusion and Future Goals

Fabrication of Lunar Excavator

Analysis of System Performance

- In conclusion, the lunar excavator utilizes a simple design to accomplish the design objects. The lunar excavator was been theoretically proven to not only meet but exceed competition standards.
 - * Competition Standards -80kg Max

*Proven Results - 41kg

-Raise 0.5m

- Raise 0.7m

Future Goals

- Purchase Materials
- Fabrication of Lunar Excavator
- Analysis of Excavator Performance