CUBE SATELLITE ENVIRONMENTAL SIMULATOR

DESIGN ALTERNATIVES PRESENTATION

Daniel Taylor, Danny Kendrick, Christian McFadden

Mission Objective:

Our goal is to design and build a simulator that can reproduce the sun as a source of radiation, and rotate the cube satellite in order to determine the amount of power it receives from the solar cells with respect to its angle.

REQUIREMENTS

- Rotate satellite about multiple axes at a speed of 1-5 rpm
- Produce a light source with the same spectrum and intensity as the sun
- A reflective surface to represent the albedo of the earth (30%)
- No spurious light reflections
- Ideally fit into an anechoic chamber

DESIGN CONCEPTS

NEW IDEA FOR CLAMP

ALTERNATE CONCEPT: GYRO

We'll be using a DC motor to power the rotation of the cube

IG32P 24VDC 008 RPM Gear Motor

Reductio n Ratio	Rated Torque	Rated Speed	Rated Current	No Load Speed	No Load Current
	kgf-cm	rpm	mA	rpm	mA
1:721	12	8	<900mA	8	<450mA

STEPPER MOTOR:

>We will use stepper motors to control the angle at which the swing rotates

UCD1/7; UCD2/8

Dimensions (mm): 28 x 24 Step angle (°): 7.5 Holding torque * (cNm): 1.6 – 2.7

COMPUTER INTERFACE

Visual Feedback

SOLAR SIMULATION

...CONTINUED

Mercury Arc Bulb

Halogen Bulb

SYSTEM HIERARCHY

CONCEPT OF OPERATION

- Secure the Cubesat into clamp
 Orientate system to a certain degree
 Set DC motor to desired rpm
 Turn on light source
- Analyze results using computer interface