USDA Subsurface Banding Implement Soil Trencher Improvements

Concept Design Review

Corp 10 – Fall 2010

Christina Locklear Alex Peterson Alex Scammell Patrick Smyth Matt Turberville

Outline

- Mission Objective
- Architectural Design

 Feasible Alternatives
 Final Concept
- Product Hierarchy
- Bill of Materials
- Preliminary Analysis
- Questions

"The Trencher"

Way, Thomas et al. "Applicator System and Method for the Agricultural Distribution of Biodegradable and Non-Biodegradable Materials." Patent 7,721,662 B2. 25 May 2010

Mission Objective

- Litter Application Component:
 - "To improve or redesign the walls of the poultry litter implement so that litter can be more effectively distributed to the soil, mitigating the clogging that currently occurs during normal operation"
- Dirt Recovery Component
 - "To improve or replace the current press-wheel system used on the implement for dirt recovery so that the extricated soil is more effectively replaced over the deposited litter band"

Architectural Design

• Feasible Alternatives

– Dirt Recovery

- John Deere
- Trapezoidal
- Self Adjusting
- Two Bar Collector
- Two Hinge Scoop

– Trencher Wall

- Straight Wall
- Circular Bend
- Angled Bend
- Front Flared
- Angled Wall

Dirt Recovery Alternatives

John Deere Model

Dirt Recovery Alternatives

Self Adjusting Concept

Dirt Recovery Alternatives

Two Bar Concept

Trencher Wall Alternatives

CORP 10 USDA TRENCHER

Final Concept

Dirt Recovery Product Hierarchy

Bill of Materials

Material	Size	Quantity	Retailer	Cost
Steel Flat Bar	1 x 12 x ¼"	2	McMaster-Carr	\$ 22.14
Steel Plate	6 x 6 x 1"	1	McMaster-Carr	\$ 40.31
Steel Flat Bar	5 x 18 x ¼"	1	McMaster-Carr	\$ 56.68
Bolts	¼ -20 x 1.5"	8	McMaster-Carr	\$ 0.64
Nuts	1⁄4 - 20	6	McMaster-Carr	\$ 0.18
Wing Nuts	1⁄4 - 20	2	McMaster-Carr	\$ 0.20
Labor		3		\$ 105.00
			TOTAL COST	\$ 225.15

Preliminary Analysis

• Trencher Wall Pressure Analysis

http://content.honeywell.com/sensing/sensotec/pdf_catalog08/008602-1-EN_Model_F.pdf

Preliminary Analysis

Trencher Wall ANSYS Analysis

Wall Deflection vs. Wall Thickness (40 psi Pressure)

Preliminary Analysis

Dirt Recovery Mechanism FBD Analysis

 $\Sigma F_x = ma_x$ $\Sigma F_y = 0$ $\Sigma M_{CB} = 0$

Use MATLAB to solve force equations and find shear stress on pivots

Questions?

